Deep Generative Adversarial Reinforcement Learning for Semi-Supervised Segmentation of Low-Contrast and Small Objects in Medical Images

分割 计算机科学 强化学习 人工智能 掷骰子 一般化 对比度(视觉) 图像分割 模式识别(心理学) 管道(软件) 渲染(计算机图形) 机器学习 生成语法 深度学习 计算机视觉 数学 数学分析 几何学 程序设计语言
作者
Chenchu Xu,Tong Zhang,Dong Zhang,Dingwen Zhang,Junwei Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3383716
摘要

Deep reinforcement learning (DRL) has demonstrated impressive performance in medical image segmentation, particularly for low-contrast and small medical objects. However, current DRL-based segmentation methods face limitations due to the optimization of error propagation in two separate stages and the need for a significant amount of labeled data. In this paper, we propose a novel deep generative adversarial reinforcement learning (DGARL) approach that, for the first time, enables end-to-end semi-supervised medical image segmentation in the DRL domain. DGARL ingeniously establishes a pipeline that integrates DRL and generative adversarial networks (GANs) to optimize both detection and segmentation tasks holistically while mutually enhancing each other. Specifically, DGARL introduces two innovative components to facilitate this integration in semi-supervised settings. First, a task-joint GAN with two discriminators links the detection results to the GAN's segmentation performance evaluation, allowing simultaneous joint evaluation and feedback. This ensures that DRL and GAN can be directly optimized based on each other's results. Second, a bidirectional exploration DRL integrates backward exploration and forward exploration to ensure the DRL agent explores the correct direction when forward exploration is disabled due to lack of explicit rewards. This mitigates the issue of unlabeled data being unable to provide rewards and rendering DRL unexplorable. Comprehensive experiments on three generalization datasets, comprising a total of 640 patients, demonstrate that our novel DGARL achieves 85.02% Dice and improves at least 1.91% for brain tumors, achieves 73.18% Dice and improves at least 4.28% for liver tumors, and achieves 70.85% Dice and improves at least 2.73% for pancreas compared to the ten most recent advanced methods, our results attest to the superiority of DGARL. Code is available at GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大有阳光应助Seven采纳,获得10
刚刚
谨慎的雍发布了新的文献求助10
刚刚
youmuyou完成签到,获得积分10
刚刚
zz发布了新的文献求助10
2秒前
颜好完成签到 ,获得积分10
3秒前
Bais完成签到,获得积分10
3秒前
SCI_Dark工人完成签到,获得积分10
3秒前
现代书雪发布了新的文献求助10
3秒前
3秒前
小野菌发布了新的文献求助10
5秒前
5秒前
无限的铅笔完成签到,获得积分10
5秒前
就是贝利完成签到,获得积分10
6秒前
6秒前
博雅雅雅雅雅完成签到,获得积分10
6秒前
GHL完成签到,获得积分10
6秒前
岛L完成签到,获得积分10
7秒前
要减肥半邪给要减肥半邪的求助进行了留言
8秒前
dehua完成签到,获得积分10
8秒前
王木木发布了新的文献求助10
9秒前
兔子云完成签到 ,获得积分10
9秒前
谨慎的雍完成签到,获得积分10
9秒前
9秒前
9秒前
梅仑西西发布了新的文献求助10
9秒前
Axeliar完成签到,获得积分10
10秒前
内向秋寒完成签到,获得积分10
10秒前
传奇3应助如意电灯胆采纳,获得10
10秒前
今后应助现代书雪采纳,获得10
10秒前
酷波er应助renjian采纳,获得10
10秒前
慕青应助吴兰田采纳,获得10
10秒前
malus完成签到,获得积分20
10秒前
亭语完成签到 ,获得积分10
14秒前
田様应助1+1采纳,获得10
14秒前
hazzi完成签到,获得积分10
15秒前
15秒前
Owen应助看小龙虾打架采纳,获得10
15秒前
15秒前
大藏臧完成签到,获得积分10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155477
求助须知:如何正确求助?哪些是违规求助? 2806554
关于积分的说明 7869834
捐赠科研通 2464938
什么是DOI,文献DOI怎么找? 1311998
科研通“疑难数据库(出版商)”最低求助积分说明 629837
版权声明 601892