亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Generative Adversarial Reinforcement Learning for Semi-Supervised Segmentation of Low-Contrast and Small Objects in Medical Images

分割 计算机科学 强化学习 人工智能 掷骰子 一般化 对比度(视觉) 图像分割 模式识别(心理学) 管道(软件) 机器学习 生成语法 计算机视觉 数学 数学分析 几何学 程序设计语言
作者
Chenchu Xu,Tong Zhang,Dong Zhang,Dingwen Zhang,Junwei Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3072-3084 被引量:11
标识
DOI:10.1109/tmi.2024.3383716
摘要

Deep reinforcement learning (DRL) has demonstrated impressive performance in medical image segmentation, particularly for low-contrast and small medical objects. However, current DRL-based segmentation methods face limitations due to the optimization of error propagation in two separate stages and the need for a significant amount of labeled data. In this paper, we propose a novel deep generative adversarial reinforcement learning (DGARL) approach that, for the first time, enables end-to-end semi-supervised medical image segmentation in the DRL domain. DGARL ingeniously establishes a pipeline that integrates DRL and generative adversarial networks (GANs) to optimize both detection and segmentation tasks holistically while mutually enhancing each other. Specifically, DGARL introduces two innovative components to facilitate this integration in semi-supervised settings. First, a task-joint GAN with two discriminators links the detection results to the GAN's segmentation performance evaluation, allowing simultaneous joint evaluation and feedback. This ensures that DRL and GAN can be directly optimized based on each other's results. Second, a bidirectional exploration DRL integrates backward exploration and forward exploration to ensure the DRL agent explores the correct direction when forward exploration is disabled due to lack of explicit rewards. This mitigates the issue of unlabeled data being unable to provide rewards and rendering DRL unexplorable. Comprehensive experiments on three generalization datasets, comprising a total of 640 patients, demonstrate that our novel DGARL achieves 85.02% Dice and improves at least 1.91% for brain tumors, achieves 73.18% Dice and improves at least 4.28% for liver tumors, and achieves 70.85% Dice and improves at least 2.73% for pancreas compared to the ten most recent advanced methods, our results attest to the superiority of DGARL. Code is available at GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助neko采纳,获得10
刚刚
3秒前
侯锐淇完成签到 ,获得积分10
6秒前
8秒前
xiaowang发布了新的文献求助10
9秒前
moodlunatic发布了新的文献求助30
14秒前
qiuzhu_完成签到 ,获得积分10
19秒前
xiaowang完成签到,获得积分10
19秒前
ceeray23发布了新的文献求助20
19秒前
Hello应助小杨采纳,获得10
20秒前
123456完成签到,获得积分10
25秒前
moodlunatic完成签到,获得积分10
26秒前
28秒前
123456发布了新的文献求助20
29秒前
清爽冬莲完成签到 ,获得积分0
35秒前
37秒前
qiuzhu_发布了新的文献求助10
42秒前
44秒前
鲤鱼发布了新的文献求助10
50秒前
Yiyong发布了新的文献求助20
50秒前
50秒前
50秒前
科研通AI6应助古兰采纳,获得10
53秒前
55秒前
55秒前
58秒前
Nickzzz发布了新的文献求助10
59秒前
甜美的沅完成签到 ,获得积分10
1分钟前
失眠的稀发布了新的文献求助10
1分钟前
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
草莓星发布了新的文献求助10
1分钟前
Yanhai发布了新的文献求助10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262