Deep Generative Adversarial Reinforcement Learning for Semi-Supervised Segmentation of Low-Contrast and Small Objects in Medical Images

分割 计算机科学 强化学习 人工智能 掷骰子 一般化 对比度(视觉) 图像分割 模式识别(心理学) 管道(软件) 机器学习 生成语法 计算机视觉 数学 数学分析 几何学 程序设计语言
作者
Chenchu Xu,Tong Zhang,Dong Zhang,Dingwen Zhang,Junwei Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3072-3084 被引量:2
标识
DOI:10.1109/tmi.2024.3383716
摘要

Deep reinforcement learning (DRL) has demonstrated impressive performance in medical image segmentation, particularly for low-contrast and small medical objects. However, current DRL-based segmentation methods face limitations due to the optimization of error propagation in two separate stages and the need for a significant amount of labeled data. In this paper, we propose a novel deep generative adversarial reinforcement learning (DGARL) approach that, for the first time, enables end-to-end semi-supervised medical image segmentation in the DRL domain. DGARL ingeniously establishes a pipeline that integrates DRL and generative adversarial networks (GANs) to optimize both detection and segmentation tasks holistically while mutually enhancing each other. Specifically, DGARL introduces two innovative components to facilitate this integration in semi-supervised settings. First, a task-joint GAN with two discriminators links the detection results to the GAN's segmentation performance evaluation, allowing simultaneous joint evaluation and feedback. This ensures that DRL and GAN can be directly optimized based on each other's results. Second, a bidirectional exploration DRL integrates backward exploration and forward exploration to ensure the DRL agent explores the correct direction when forward exploration is disabled due to lack of explicit rewards. This mitigates the issue of unlabeled data being unable to provide rewards and rendering DRL unexplorable. Comprehensive experiments on three generalization datasets, comprising a total of 640 patients, demonstrate that our novel DGARL achieves 85.02% Dice and improves at least 1.91% for brain tumors, achieves 73.18% Dice and improves at least 4.28% for liver tumors, and achieves 70.85% Dice and improves at least 2.73% for pancreas compared to the ten most recent advanced methods, our results attest to the superiority of DGARL. Code is available at GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咩咩完成签到,获得积分20
1秒前
合一海盗应助wtg采纳,获得200
1秒前
1秒前
Grayball应助ccc采纳,获得10
1秒前
bkagyin应助猪猪hero采纳,获得10
2秒前
2秒前
科研通AI5应助顺利毕业采纳,获得10
3秒前
领导范儿应助spray采纳,获得30
3秒前
3秒前
长风完成签到,获得积分10
4秒前
5秒前
吴岳发布了新的文献求助10
5秒前
科研通AI2S应助我是125采纳,获得10
6秒前
涛涛完成签到,获得积分10
6秒前
轩辕德地发布了新的文献求助10
7秒前
科研通AI2S应助jidou1011采纳,获得10
7秒前
魔幻的妖丽完成签到 ,获得积分10
8秒前
黄晓杰2024完成签到,获得积分10
9秒前
枫叶完成签到,获得积分10
10秒前
10秒前
11秒前
小二郎应助虚心盼晴采纳,获得10
11秒前
俊逸的盛男完成签到 ,获得积分10
11秒前
13秒前
脑洞疼应助枫叶采纳,获得10
14秒前
14秒前
Gyrate完成签到,获得积分10
15秒前
李李发布了新的文献求助50
15秒前
dashi完成签到 ,获得积分10
15秒前
无花果应助一天八杯水采纳,获得10
15秒前
15秒前
SS发布了新的文献求助10
16秒前
顺顺发布了新的文献求助10
17秒前
17秒前
17秒前
www发布了新的文献求助10
17秒前
18秒前
18秒前
李繁蕊发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808