A Comparative Study of Large Language Models, Human Experts, and Expert-Edited Large Language Models to Neuro-Ophthalmology Questions

移情 心理学 质量(理念) 医学 精神科 哲学 认识论
作者
Prashant D. Tailor,Lauren A. Dalvin,Matthew R. Starr,Deena Tajfirouz,Kevin D. Chodnicki,Michael C. Brodsky,Sasha A. Mansukhani,Heather E. Moss,Kevin E. Lai,Melissa W. Ko,Devin D. Mackay,Marie A. Di Nome,Oana M. Dumitrascu,Misha Pless,Eric Eggenberger,John J. Chen
出处
期刊:Journal of Neuro-ophthalmology [Ovid Technologies (Wolters Kluwer)]
被引量:2
标识
DOI:10.1097/wno.0000000000002145
摘要

Background: While large language models (LLMs) are increasingly used in medicine, their effectiveness compared with human experts remains unclear. This study evaluates the quality and empathy of Expert + AI, human experts, and LLM responses in neuro-ophthalmology. Methods: This randomized, masked, multicenter cross-sectional study was conducted from June to July 2023. We randomly assigned 21 neuro-ophthalmology questions to 13 experts. Each expert provided an answer and then edited a ChatGPT-4–generated response, timing both tasks. In addition, 5 LLMs (ChatGPT-3.5, ChatGPT-4, Claude 2, Bing, Bard) generated responses. Anonymized and randomized responses from Expert + AI, human experts, and LLMs were evaluated by the remaining 12 experts. The main outcome was the mean score for quality and empathy, rated on a 1–5 scale. Results: Significant differences existed between response types for both quality and empathy ( P < 0.0001, P < 0.0001). For quality, Expert + AI (4.16 ± 0.81) performed the best, followed by GPT-4 (4.04 ± 0.92), GPT-3.5 (3.99 ± 0.87), Claude (3.6 ± 1.09), Expert (3.56 ± 1.01), Bard (3.5 ± 1.15), and Bing (3.04 ± 1.12). For empathy, Expert + AI (3.63 ± 0.87) had the highest score, followed by GPT-4 (3.6 ± 0.88), Bard (3.54 ± 0.89), GPT-3.5 (3.5 ± 0.83), Bing (3.27 ± 1.03), Expert (3.26 ± 1.08), and Claude (3.11 ± 0.78). For quality ( P < 0.0001) and empathy ( P = 0.002), Expert + AI performed better than Expert. Time taken for expert-created and expert-edited LLM responses was similar ( P = 0.75). Conclusions: Expert-edited LLM responses had the highest expert-determined ratings of quality and empathy warranting further exploration of their potential benefits in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蔡蔡完成签到,获得积分10
1秒前
2秒前
2秒前
风中的宛白应助xyy102采纳,获得10
3秒前
佳思思完成签到,获得积分10
3秒前
RR发布了新的文献求助10
3秒前
玥1发布了新的文献求助10
4秒前
4秒前
聂学雨发布了新的文献求助10
5秒前
激动的寒珊完成签到 ,获得积分10
5秒前
CipherSage应助跳跃的仙人掌采纳,获得10
5秒前
高兴元绿完成签到 ,获得积分10
6秒前
鲜于夜白发布了新的文献求助10
6秒前
Shirley完成签到 ,获得积分10
7秒前
7秒前
7秒前
曹大壮完成签到,获得积分10
8秒前
你过来啊完成签到 ,获得积分10
9秒前
顾矜应助RR采纳,获得10
9秒前
9秒前
安详晓夏完成签到,获得积分10
9秒前
yaoguang发布了新的文献求助10
10秒前
11秒前
阳光无春完成签到,获得积分10
11秒前
weikang完成签到,获得积分10
12秒前
笨笨凡之发布了新的文献求助10
12秒前
FashionBoy应助超帅的水壶采纳,获得10
13秒前
汉堡包应助认真的果汁采纳,获得40
14秒前
小鱼儿完成签到,获得积分10
14秒前
14秒前
15秒前
可爱的函函应助一一六采纳,获得10
15秒前
15秒前
weikang发布了新的文献求助10
16秒前
领导范儿应助AXXXin采纳,获得10
16秒前
WG应助111采纳,获得10
17秒前
小巧语雪完成签到,获得积分20
18秒前
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866