A large language model–based generative natural language processing framework fine‐tuned on clinical notes accurately extracts headache frequency from electronic health records

人工智能 变压器 医学 计算机科学 自然语言处理 介绍 语言模型 偏头痛 生成模型 背景(考古学) 置信区间 机器学习 生成语法 家庭医学 内科学 古生物学 物理 量子力学 电压 生物
作者
Chia‐Chun Chiang,Man Luo,Gina Dumkrieger,Shubham Trivedi,Yi‐Chieh Chen,Chieh‐Ju Chao,Todd J. Schwedt,Abeed Sarker,Imon Banerjee
出处
期刊:Headache [Wiley]
卷期号:64 (4): 400-409 被引量:12
标识
DOI:10.1111/head.14702
摘要

Abstract Objective To develop a natural language processing (NLP) algorithm that can accurately extract headache frequency from free‐text clinical notes. Background Headache frequency, defined as the number of days with any headache in a month (or 4 weeks), remains a key parameter in the evaluation of treatment response to migraine preventive medications. However, due to the variations and inconsistencies in documentation by clinicians, significant challenges exist to accurately extract headache frequency from the electronic health record (EHR) by traditional NLP algorithms. Methods This was a retrospective cross‐sectional study with patients identified from two tertiary headache referral centers, Mayo Clinic Arizona and Mayo Clinic Rochester. All neurology consultation notes written by 15 specialized clinicians (11 headache specialists and 4 nurse practitioners) between 2012 and 2022 were extracted and 1915 notes were used for model fine‐tuning (90%) and testing (10%). We employed four different NLP frameworks: (1) ClinicalBERT (Bidirectional Encoder Representations from Transformers) regression model, (2) Generative Pre‐Trained Transformer‐2 (GPT‐2) Question Answering (QA) model zero‐shot, (3) GPT‐2 QA model few‐shot training fine‐tuned on clinical notes, and (4) GPT‐2 generative model few‐shot training fine‐tuned on clinical notes to generate the answer by considering the context of included text. Results The mean (standard deviation) headache frequency of our training and testing datasets were 13.4 (10.9) and 14.4 (11.2), respectively. The GPT‐2 generative model was the best‐performing model with an accuracy of 0.92 (0.91, 0.93, 95% confidence interval [CI]) and R 2 score of 0.89 (0.87, 0.90, 95% CI), and all GPT‐2–based models outperformed the ClinicalBERT model in terms of exact matching accuracy. Although the ClinicalBERT regression model had the lowest accuracy of 0.27 (0.26, 0.28), it demonstrated a high R 2 score of 0.88 (0.85, 0.89), suggesting the ClinicalBERT model can reasonably predict the headache frequency within a range of ≤ ± 3 days, and the R 2 score was higher than the GPT‐2 QA zero‐shot model or GPT‐2 QA model few‐shot training fine‐tuned model. Conclusion We developed a robust information extraction model based on a state‐of‐the‐art large language model, a GPT‐2 generative model that can extract headache frequency from EHR free‐text clinical notes with high accuracy and R 2 score. It overcame several challenges related to different ways clinicians document headache frequency that were not easily achieved by traditional NLP models. We also showed that GPT‐2–based frameworks outperformed ClinicalBERT in terms of accuracy in extracting headache frequency from clinical notes. To facilitate research in the field, we released the GPT‐2 generative model and inference code with open‐source license of community use in GitHub. Additional fine‐tuning of the algorithm might be required when applied to different health‐care systems for various clinical use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助酷炫芝麻采纳,获得20
刚刚
694255360发布了新的文献求助10
刚刚
jia0发布了新的文献求助10
1秒前
aikey完成签到,获得积分10
2秒前
彭于晏应助文静元霜采纳,获得10
2秒前
李健的粉丝团团长应助lxl采纳,获得10
4秒前
沙坑发布了新的文献求助10
4秒前
4秒前
岁岁菌完成签到,获得积分10
4秒前
封尘逸动发布了新的文献求助10
4秒前
5秒前
5秒前
snail完成签到,获得积分10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
宇宙中心完成签到,获得积分10
8秒前
moca发布了新的文献求助10
9秒前
11秒前
Broadway Zhang完成签到,获得积分10
11秒前
认真银耳汤完成签到,获得积分10
12秒前
kyt完成签到,获得积分10
12秒前
Elaine发布了新的文献求助10
13秒前
香蕉觅云应助demian采纳,获得10
13秒前
13秒前
14秒前
Greta发布了新的文献求助10
15秒前
gaogao发布了新的文献求助10
15秒前
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
zho应助科研通管家采纳,获得10
16秒前
16秒前
wanci应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226