Muscle-inspired stiffness-tunable flexible fiber jamming structure for wearable robots

干扰 刚度 可穿戴计算机 机器人 材料科学 纤维 计算机科学 复合材料 人工智能 物理 嵌入式系统 热力学
作者
Junlin Ma,Diansheng Chen,Zhe Liu,Jialing Li,Zihan Zeng,Yingxitong Yin,Xianglin Zhang,Chen Shu,Yaohui Zhu,Zhihan Fu,Yongkang Jiang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (5): 055002-055002
标识
DOI:10.1088/1361-665x/ad37b5
摘要

Abstract Soft robotics have found their tremendous application prospects in wearable robots due to the inherent compliance of soft materials when interacting with human bodies. However, the limited load-bearing and output capabilities impeded their application in real world. Variable stiffness design contributes to tackling this problem by enhancing the overall structural rigidity. Nevertheless, most of current jamming-based variable stiffness structures realize their stiffness enhancement by squeezing discrete rigid elements, resulting in the loss of structural compliance in the high stiffness state, which could significantly reduce the deformability and even injure the individuals when utilized in wearable robots. In this paper, we propose a muscle-inspired stiffness-continuously-adjustable flexible fiber jamming (FFJ) structure for soft wearable robots. The FFJ structure can achieve continuous stiffness-variation by controlling the fiber overlapping length, which maintains stretchability even in the high stiffness state. We provide a theoretical model to analyze the mechanical performance of the proposed FFJ structure with different design parameters, and verify the model experimentally. The preliminary results show that we achieved 9 times of stiffness enhancement of the proposed FFJ structure by controlling the vacuum pressure, and the maximum tensile stiffness is 4.1 N mm −1 . We further demonstrated the effectiveness of the proposed FFJ structure on wearable robots in three different working scenarios: active finger rehabilitation, active elbow rehabilitation, and passive trunk support. The results show that the FFJ structure was able to provide controllable impedance force for active finger/elbow rehabilitation, and help support the human body during long-term labor. This work broadens the frontiers of soft wearable robots and leads a way to the future design of soft and strong robots and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
云之南完成签到,获得积分20
2秒前
情怀应助biubiudididi采纳,获得10
2秒前
YU发布了新的文献求助10
2秒前
Lucas应助Run采纳,获得10
2秒前
Qiao应助djbj2022采纳,获得80
2秒前
3秒前
莉莉子完成签到,获得积分10
3秒前
特西之魂完成签到 ,获得积分10
3秒前
万能图书馆应助aaa采纳,获得10
3秒前
糟糕的学姐完成签到,获得积分10
3秒前
小华发布了新的文献求助10
3秒前
清新的夜柳完成签到,获得积分10
4秒前
4秒前
4秒前
活力的秋莲完成签到,获得积分10
4秒前
ljxx发布了新的文献求助10
5秒前
SYLH应助刘强采纳,获得10
6秒前
pluto应助奋斗小公主采纳,获得10
6秒前
LLLLXR发布了新的文献求助10
6秒前
6秒前
小乐应助zhengmin采纳,获得30
7秒前
7秒前
8秒前
楚江南完成签到,获得积分10
8秒前
我爱亲柠檬完成签到,获得积分10
8秒前
9秒前
loomcool完成签到,获得积分10
9秒前
9秒前
郭泓嵩完成签到,获得积分10
10秒前
王倩的老公完成签到 ,获得积分10
10秒前
张星星完成签到 ,获得积分10
10秒前
vv发布了新的文献求助10
10秒前
刻苦熠彤关注了科研通微信公众号
10秒前
Jay发布了新的文献求助10
11秒前
11秒前
aaa完成签到,获得积分20
11秒前
666应助淡然的衣采纳,获得10
12秒前
LLLLXR完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827