Muscle-inspired stiffness-tunable flexible fiber jamming structure for wearable robots

干扰 刚度 可穿戴计算机 机器人 材料科学 纤维 计算机科学 复合材料 人工智能 物理 嵌入式系统 热力学
作者
Junlin Ma,Diansheng Chen,Zhe Liu,Jialing Li,Zihan Zeng,Yingxitong Yin,Xianglin Zhang,Chen Shu,Yaohui Zhu,Zhihan Fu,Yongkang Jiang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (5): 055002-055002
标识
DOI:10.1088/1361-665x/ad37b5
摘要

Abstract Soft robotics have found their tremendous application prospects in wearable robots due to the inherent compliance of soft materials when interacting with human bodies. However, the limited load-bearing and output capabilities impeded their application in real world. Variable stiffness design contributes to tackling this problem by enhancing the overall structural rigidity. Nevertheless, most of current jamming-based variable stiffness structures realize their stiffness enhancement by squeezing discrete rigid elements, resulting in the loss of structural compliance in the high stiffness state, which could significantly reduce the deformability and even injure the individuals when utilized in wearable robots. In this paper, we propose a muscle-inspired stiffness-continuously-adjustable flexible fiber jamming (FFJ) structure for soft wearable robots. The FFJ structure can achieve continuous stiffness-variation by controlling the fiber overlapping length, which maintains stretchability even in the high stiffness state. We provide a theoretical model to analyze the mechanical performance of the proposed FFJ structure with different design parameters, and verify the model experimentally. The preliminary results show that we achieved 9 times of stiffness enhancement of the proposed FFJ structure by controlling the vacuum pressure, and the maximum tensile stiffness is 4.1 N mm −1 . We further demonstrated the effectiveness of the proposed FFJ structure on wearable robots in three different working scenarios: active finger rehabilitation, active elbow rehabilitation, and passive trunk support. The results show that the FFJ structure was able to provide controllable impedance force for active finger/elbow rehabilitation, and help support the human body during long-term labor. This work broadens the frontiers of soft wearable robots and leads a way to the future design of soft and strong robots and devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助咕噜咕噜采纳,获得10
刚刚
科研通AI2S应助xuz采纳,获得10
刚刚
safsafdfasf发布了新的文献求助10
刚刚
刚刚
北海舰长发布了新的文献求助10
1秒前
1秒前
xiaolan完成签到,获得积分10
1秒前
脑洞疼应助纪诗筠采纳,获得10
2秒前
2秒前
PiaoGuo发布了新的文献求助10
2秒前
baby完成签到,获得积分10
2秒前
Jared应助很帅的那种采纳,获得10
2秒前
Richard发布了新的文献求助10
3秒前
酒尚温完成签到 ,获得积分10
3秒前
QiuQiu发布了新的文献求助10
3秒前
乐空思应助sun采纳,获得50
3秒前
FengYun完成签到,获得积分10
3秒前
椰汁味完成签到,获得积分10
3秒前
13完成签到,获得积分10
3秒前
3秒前
HanZhang发布了新的文献求助10
4秒前
万能图书馆应助李土豆采纳,获得10
4秒前
Yanwenjun发布了新的文献求助10
4秒前
fgh发布了新的文献求助10
4秒前
854fycchjh完成签到,获得积分10
4秒前
5秒前
5秒前
teriteri完成签到,获得积分10
5秒前
烈日骄阳完成签到,获得积分10
5秒前
科研通AI6应助safsafdfasf采纳,获得10
5秒前
Ride完成签到,获得积分10
6秒前
6秒前
6秒前
PiaoGuo完成签到,获得积分10
6秒前
meng完成签到,获得积分10
7秒前
苏苏完成签到,获得积分10
7秒前
木齐Jay完成签到,获得积分10
7秒前
cookie关注了科研通微信公众号
7秒前
7秒前
zgrmws应助liuhuayaxi采纳,获得20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665553
求助须知:如何正确求助?哪些是违规求助? 4877312
关于积分的说明 15114485
捐赠科研通 4824825
什么是DOI,文献DOI怎么找? 2582883
邀请新用户注册赠送积分活动 1536919
关于科研通互助平台的介绍 1495370