Muscle-inspired stiffness-tunable flexible fiber jamming structure for wearable robots

干扰 刚度 可穿戴计算机 机器人 材料科学 纤维 计算机科学 复合材料 人工智能 物理 嵌入式系统 热力学
作者
Junlin Ma,Diansheng Chen,Zhe Liu,Jialing Li,Zihan Zeng,Yingxitong Yin,Xianglin Zhang,Chen Shu,Yaohui Zhu,Zhihan Fu,Yongkang Jiang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (5): 055002-055002
标识
DOI:10.1088/1361-665x/ad37b5
摘要

Abstract Soft robotics have found their tremendous application prospects in wearable robots due to the inherent compliance of soft materials when interacting with human bodies. However, the limited load-bearing and output capabilities impeded their application in real world. Variable stiffness design contributes to tackling this problem by enhancing the overall structural rigidity. Nevertheless, most of current jamming-based variable stiffness structures realize their stiffness enhancement by squeezing discrete rigid elements, resulting in the loss of structural compliance in the high stiffness state, which could significantly reduce the deformability and even injure the individuals when utilized in wearable robots. In this paper, we propose a muscle-inspired stiffness-continuously-adjustable flexible fiber jamming (FFJ) structure for soft wearable robots. The FFJ structure can achieve continuous stiffness-variation by controlling the fiber overlapping length, which maintains stretchability even in the high stiffness state. We provide a theoretical model to analyze the mechanical performance of the proposed FFJ structure with different design parameters, and verify the model experimentally. The preliminary results show that we achieved 9 times of stiffness enhancement of the proposed FFJ structure by controlling the vacuum pressure, and the maximum tensile stiffness is 4.1 N mm −1 . We further demonstrated the effectiveness of the proposed FFJ structure on wearable robots in three different working scenarios: active finger rehabilitation, active elbow rehabilitation, and passive trunk support. The results show that the FFJ structure was able to provide controllable impedance force for active finger/elbow rehabilitation, and help support the human body during long-term labor. This work broadens the frontiers of soft wearable robots and leads a way to the future design of soft and strong robots and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onevip完成签到,获得积分10
4秒前
星辰与月完成签到,获得积分10
9秒前
土归土完成签到,获得积分10
13秒前
魔幻海豚完成签到 ,获得积分10
15秒前
stephen完成签到 ,获得积分10
16秒前
CipherSage应助InaZheng采纳,获得10
18秒前
酷波er应助Wang采纳,获得10
20秒前
打工人一枚完成签到,获得积分10
21秒前
z1jioyeah完成签到 ,获得积分10
23秒前
乐乐应助辛慧采纳,获得10
26秒前
29秒前
yifan92完成签到,获得积分10
29秒前
Polymer72应助科研通管家采纳,获得10
31秒前
lyz发布了新的文献求助10
32秒前
chenying完成签到 ,获得积分0
32秒前
科研岳完成签到,获得积分10
34秒前
ifast完成签到 ,获得积分10
38秒前
科研通AI2S应助lyz采纳,获得10
41秒前
北国雪未消完成签到 ,获得积分10
45秒前
柒八染完成签到 ,获得积分10
46秒前
qianci2009完成签到,获得积分10
47秒前
50秒前
InaZheng发布了新的文献求助10
55秒前
平常安雁完成签到 ,获得积分10
58秒前
TANGLX完成签到,获得积分10
1分钟前
1分钟前
yyy完成签到 ,获得积分10
1分钟前
自由飞翔完成签到 ,获得积分10
1分钟前
源晓现发布了新的文献求助10
1分钟前
1分钟前
TANGLX发布了新的文献求助20
1分钟前
辛慧发布了新的文献求助10
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
changyongcheng完成签到 ,获得积分10
1分钟前
绿袖子完成签到,获得积分10
1分钟前
萝卜丁完成签到 ,获得积分0
1分钟前
1分钟前
Hiaoliem完成签到 ,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
辛慧完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356906
求助须知:如何正确求助?哪些是违规求助? 2980478
关于积分的说明 8694486
捐赠科研通 2662210
什么是DOI,文献DOI怎么找? 1457642
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665807