Muscle-inspired stiffness-tunable flexible fiber jamming structure for wearable robots

干扰 刚度 可穿戴计算机 机器人 材料科学 纤维 计算机科学 复合材料 人工智能 物理 嵌入式系统 热力学
作者
Junlin Ma,Diansheng Chen,Zhe Liu,Jialing Li,Zihan Zeng,Yingxitong Yin,Xianglin Zhang,Chen Shu,Yaohui Zhu,Zhihan Fu,Yongkang Jiang
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (5): 055002-055002
标识
DOI:10.1088/1361-665x/ad37b5
摘要

Abstract Soft robotics have found their tremendous application prospects in wearable robots due to the inherent compliance of soft materials when interacting with human bodies. However, the limited load-bearing and output capabilities impeded their application in real world. Variable stiffness design contributes to tackling this problem by enhancing the overall structural rigidity. Nevertheless, most of current jamming-based variable stiffness structures realize their stiffness enhancement by squeezing discrete rigid elements, resulting in the loss of structural compliance in the high stiffness state, which could significantly reduce the deformability and even injure the individuals when utilized in wearable robots. In this paper, we propose a muscle-inspired stiffness-continuously-adjustable flexible fiber jamming (FFJ) structure for soft wearable robots. The FFJ structure can achieve continuous stiffness-variation by controlling the fiber overlapping length, which maintains stretchability even in the high stiffness state. We provide a theoretical model to analyze the mechanical performance of the proposed FFJ structure with different design parameters, and verify the model experimentally. The preliminary results show that we achieved 9 times of stiffness enhancement of the proposed FFJ structure by controlling the vacuum pressure, and the maximum tensile stiffness is 4.1 N mm −1 . We further demonstrated the effectiveness of the proposed FFJ structure on wearable robots in three different working scenarios: active finger rehabilitation, active elbow rehabilitation, and passive trunk support. The results show that the FFJ structure was able to provide controllable impedance force for active finger/elbow rehabilitation, and help support the human body during long-term labor. This work broadens the frontiers of soft wearable robots and leads a way to the future design of soft and strong robots and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
m_seek完成签到,获得积分10
刚刚
木心长发布了新的文献求助10
1秒前
1秒前
土二给土二的求助进行了留言
1秒前
2秒前
在水一方应助十五采纳,获得10
4秒前
Yzh完成签到,获得积分10
4秒前
smile发布了新的文献求助10
5秒前
Michael Zhang完成签到 ,获得积分10
5秒前
邓年念发布了新的文献求助10
6秒前
云那边的山发布了新的文献求助300
7秒前
英姑应助EMMA采纳,获得10
8秒前
浮游应助xxx采纳,获得10
9秒前
深情安青应助小王采纳,获得30
9秒前
AIKaikai发布了新的文献求助10
10秒前
10秒前
12秒前
13秒前
怕孤独的聪展完成签到,获得积分10
15秒前
16秒前
16秒前
李健的小迷弟应助Lisa田采纳,获得20
16秒前
16秒前
邓年念完成签到,获得积分10
19秒前
19秒前
Windsea完成签到,获得积分10
19秒前
李健应助苟文锋采纳,获得10
20秒前
何雨航发布了新的文献求助10
20秒前
21秒前
21秒前
Lucas应助lily采纳,获得10
22秒前
22秒前
lhr关闭了lhr文献求助
22秒前
23秒前
24秒前
25秒前
隐形曼青应助科研进化中采纳,获得10
25秒前
顶上之战发布了新的文献求助30
26秒前
千早爱音应助123采纳,获得10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452