Abstract 3543: TWNeoDB: A web-based database for tumor neoantigens in the Taiwanese population

数据库 人口 万维网 计算机科学 医学 环境卫生
作者
Yu‐Hsuan Tseng,Chia-Hsin Wu,Chia-Yu Sung,Huang Kevin Chih Yang,Mong‐Hsun Tsai,Liang‐Chuan Lai,Tzu‐Pin Lu,K. S. Clifford Chao,Eric Y. Chuang,Chien‐Yueh Lee
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3543-3543
标识
DOI:10.1158/1538-7445.am2024-3543
摘要

Abstract Tumor neoantigens are highly immunogenic. Two types of neoantigens have been reported for their ability to be shared among patients. One is a mutated tumor-specific antigen (mTSA) derived from somatic mutations in tumor cells. The other is an aberrantly expressed TSA (aeTSA), influenced by epigenetic changes or abnormal RNA splicing. Tumor neoantigens can bind with the major histocompatibility complex (MHC) and be recognized by the T cell receptor (TCR). Consequently, they can trigger the immune system to attack cancer cells. Until now, some neoantigen databases have been available, they mostly focus on the Western population and primarily contain peptides derived from mTSAs. In contrast, our database provides peptides not only from mTSA but also from aeTSA with a strong emphasis on the Taiwanese population. Initially, we obtained public sequencing raw data from the NCBI database and employed a neoantigen pipeline for analysis, identifying potential neoantigens. The data collection criteria included samples from Taiwanese individuals, with paired DNA-seq or RNA-seq from both normal and tumor tissues of the same patients. RNA sequencing datasets were utilized to identify aeTSAs and mTSAs, whereas DNA sequencing datasets served for mTSA identification. Additionally, human leukocyte antigen (HLA) genotyping was performed for every sample. The identified peptides were further compared to previously validated data available on IEDB. This data was used to develop a web-based database with several functionalities. Users can search for specific peptides and download relevant data from the website. The website also included data cross-referenced and validated with IEDB. In addition, we incorporated clinically validated peptides capable of stimulating T cells to release cytotoxins or interferons. A machine-learning-based LightGBM model was trained to predict immunogenicity for these peptides through a series of cross-validations based on random data splitting. Users can access comprehensive information on tumor-specific peptides in the online database. We collected sequencing data from 243 patients, spanning five different types of cancer. The predominant HLA genotype is HLA-A*11:01, a common allele in the Taiwanese population. Peptide characteristics, such as hydrophobicity, binding affinity, and binding stability, have been calculated and stored in the database. Notably, the LightGBM model excelled in predicting immunogenicity, achieving an AUC of 0.95 on the training dataset and 0.8 on the testing dataset. Implemented in the online database, this model allows users to forecast their own candidates. The state-of-the-art database serves as a comprehensive platform for gathering Taiwanese-specific neoantigens, contributing to the advancement of personalized cancer vaccines and immunotherapies. Citation Format: Yu-Hsuan Tseng, Chia-Hsin Wu, Chia-Yu Sung, Huang Kevin Chih Yang, Mong-Hsun Tsai, Liang-Chuan Lai, Tzu-Pin Lu, K.S. Clifford Chao, Eric Y. Chuang, Chien-Yueh Lee. TWNeoDB: A web-based database for tumor neoantigens in the Taiwanese population [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3543.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小本发布了新的文献求助10
刚刚
科研八戒发布了新的文献求助30
1秒前
3秒前
3秒前
爱静静应助fengfeng采纳,获得20
5秒前
覃科长发布了新的文献求助10
5秒前
NexusExplorer应助zyx采纳,获得10
6秒前
8秒前
平常山河发布了新的文献求助10
10秒前
ook发布了新的文献求助10
12秒前
15秒前
缓慢邴完成签到,获得积分10
16秒前
18秒前
科研达人发布了新的文献求助30
19秒前
20秒前
21秒前
23秒前
小巧十三完成签到 ,获得积分10
23秒前
Melody完成签到,获得积分10
23秒前
忧心的雯发布了新的文献求助10
23秒前
25秒前
yinan完成签到,获得积分10
26秒前
Melody发布了新的文献求助10
27秒前
覃科长完成签到,获得积分10
27秒前
cedricleonard发布了新的文献求助10
28秒前
thousandlong完成签到,获得积分10
29秒前
29秒前
30秒前
30秒前
upupup111发布了新的文献求助10
31秒前
可爱完成签到 ,获得积分10
31秒前
思源应助笑点低的小天鹅采纳,获得10
33秒前
34秒前
35秒前
35秒前
彭于晏应助渤大彭于晏采纳,获得10
38秒前
38秒前
39秒前
zyx发布了新的文献求助10
39秒前
NEW发布了新的文献求助10
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149455
求助须知:如何正确求助?哪些是违规求助? 2800506
关于积分的说明 7840280
捐赠科研通 2458038
什么是DOI,文献DOI怎么找? 1308223
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706