Abstract 3543: TWNeoDB: A web-based database for tumor neoantigens in the Taiwanese population

数据库 人口 万维网 计算机科学 医学 环境卫生
作者
Yu‐Hsuan Tseng,Chia-Hsin Wu,Chia-Yu Sung,Huang Kevin Chih Yang,Mong‐Hsun Tsai,Liang‐Chuan Lai,Tzu‐Pin Lu,K. S. Clifford Chao,Eric Y. Chuang,Chien‐Yueh Lee
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3543-3543
标识
DOI:10.1158/1538-7445.am2024-3543
摘要

Abstract Tumor neoantigens are highly immunogenic. Two types of neoantigens have been reported for their ability to be shared among patients. One is a mutated tumor-specific antigen (mTSA) derived from somatic mutations in tumor cells. The other is an aberrantly expressed TSA (aeTSA), influenced by epigenetic changes or abnormal RNA splicing. Tumor neoantigens can bind with the major histocompatibility complex (MHC) and be recognized by the T cell receptor (TCR). Consequently, they can trigger the immune system to attack cancer cells. Until now, some neoantigen databases have been available, they mostly focus on the Western population and primarily contain peptides derived from mTSAs. In contrast, our database provides peptides not only from mTSA but also from aeTSA with a strong emphasis on the Taiwanese population. Initially, we obtained public sequencing raw data from the NCBI database and employed a neoantigen pipeline for analysis, identifying potential neoantigens. The data collection criteria included samples from Taiwanese individuals, with paired DNA-seq or RNA-seq from both normal and tumor tissues of the same patients. RNA sequencing datasets were utilized to identify aeTSAs and mTSAs, whereas DNA sequencing datasets served for mTSA identification. Additionally, human leukocyte antigen (HLA) genotyping was performed for every sample. The identified peptides were further compared to previously validated data available on IEDB. This data was used to develop a web-based database with several functionalities. Users can search for specific peptides and download relevant data from the website. The website also included data cross-referenced and validated with IEDB. In addition, we incorporated clinically validated peptides capable of stimulating T cells to release cytotoxins or interferons. A machine-learning-based LightGBM model was trained to predict immunogenicity for these peptides through a series of cross-validations based on random data splitting. Users can access comprehensive information on tumor-specific peptides in the online database. We collected sequencing data from 243 patients, spanning five different types of cancer. The predominant HLA genotype is HLA-A*11:01, a common allele in the Taiwanese population. Peptide characteristics, such as hydrophobicity, binding affinity, and binding stability, have been calculated and stored in the database. Notably, the LightGBM model excelled in predicting immunogenicity, achieving an AUC of 0.95 on the training dataset and 0.8 on the testing dataset. Implemented in the online database, this model allows users to forecast their own candidates. The state-of-the-art database serves as a comprehensive platform for gathering Taiwanese-specific neoantigens, contributing to the advancement of personalized cancer vaccines and immunotherapies. Citation Format: Yu-Hsuan Tseng, Chia-Hsin Wu, Chia-Yu Sung, Huang Kevin Chih Yang, Mong-Hsun Tsai, Liang-Chuan Lai, Tzu-Pin Lu, K.S. Clifford Chao, Eric Y. Chuang, Chien-Yueh Lee. TWNeoDB: A web-based database for tumor neoantigens in the Taiwanese population [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3543.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波特卡斯D艾斯完成签到 ,获得积分10
刚刚
852应助排骨炖豆角采纳,获得10
1秒前
1秒前
顾矜应助木子采纳,获得10
1秒前
feng发布了新的文献求助10
1秒前
成就的小熊猫完成签到,获得积分10
2秒前
2秒前
Morgenstern_ZH完成签到,获得积分10
3秒前
hua发布了新的文献求助10
3秒前
_Forelsket_完成签到,获得积分10
3秒前
3秒前
半颗橙子完成签到 ,获得积分10
5秒前
科研通AI5应助zmy采纳,获得10
5秒前
善学以致用应助enoot采纳,获得10
6秒前
JamesPei应助失眠的血茗采纳,获得10
6秒前
青山发布了新的文献求助10
6秒前
亻鱼发布了新的文献求助10
7秒前
脑洞疼应助成就的小熊猫采纳,获得10
7秒前
7秒前
waterclouds完成签到 ,获得积分10
7秒前
圆圈儿完成签到,获得积分10
7秒前
司空剑封完成签到,获得积分10
8秒前
8秒前
海棠yiyi完成签到,获得积分10
8秒前
8秒前
梁小鑫发布了新的文献求助10
8秒前
Jenny应助圈圈采纳,获得10
9秒前
内向青文完成签到,获得积分10
9秒前
lefora完成签到,获得积分10
9秒前
丰知然应助CO2采纳,获得10
10秒前
Zhihu完成签到,获得积分10
10秒前
feng完成签到,获得积分10
11秒前
11秒前
美丽稀完成签到,获得积分10
12秒前
PXY应助屁王采纳,获得10
12秒前
sunburst完成签到,获得积分10
12秒前
狼主完成签到 ,获得积分10
12秒前
吕亦寒完成签到,获得积分10
12秒前
junzilan发布了新的文献求助10
13秒前
ZL发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740