Whole Urine-based Multiple Cancer Diagnosis and Metabolite Profiling using 3D Evolutionary Gold Nanoarchitecture Combined with Machine Learning-assisted SERS

胶体金 纳米孔 材料科学 纳米技术 检出限 生物医学工程 纳米颗粒 化学 色谱法 医学
作者
Muhammad Shalahuddin Al Ja’farawy,Vo Thi Nhat Linh,Jun-Young Yang,ChaeWon Mun,Seunghun Lee,Sung‐Gyu Park,In Woong Han,Samjin Choi,Min‐Young Lee,Dong‐Ho Kim,Ho Sang Jung
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:412: 135828-135828 被引量:1
标识
DOI:10.1016/j.snb.2024.135828
摘要

To develop onsite applicable cancer diagnosis technologies, a noninvasive human biofluid detection method with high sensitivity and specificity is required, available for classifying cancer from the normal group. Herein, a three-dimensional evolutionary gold nanoarchitecture (3D-EGN) is developed by forming Au nanosponge (AuS) on a 96-well plate, followed by a decoration of Au nanoparticles (AuNPs) evolved with Au nanolamination (AuNL) for high-throughput urine sensing in liquid phase. The 3D-EGN exhibits not only strong electromagnetic field generated from numerous hotspot regions between AuNPs and further enhanced light scattering from multigrain boundaries after lamination process, but also highly volumetric field due to nanoporous structure of AuS, which is advantageous for sensitive liquid-phase SERS detection. SERS activity of the 3D-EGN platform is characterized using malachite green, showing a limit detection of 1.23 × 10-9 M in liquid phase, and excellent uniformities both within single well and well-to-well with relative standard deviation (RSD) values of about 10%. The 3D-EGN platform has been demonstrated for the detection of whole clinical human urine samples, proving effective molecular sensing in the presence of Brownian motion from liquid medium. Subsequently, cancer metabolite candidates are investigated to verify the metabolic alternation of multicancer, including pancreatic, prostate, lung, and colorectal cancers, simultaneously classifying them into five different groups, including normal with an accuracy of 95.6%, using machine-learning methods. The integration of nanomaterials with the conventional clinical platform provides rapid and high-throughput multicancer diagnostic system and opens a new era for noninvasive diseases diagnosis using clinical human biofluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
senpaiser完成签到,获得积分10
刚刚
正在加载发布了新的文献求助10
1秒前
1秒前
Candice发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
wanci应助zzd12318采纳,获得10
3秒前
4秒前
研友_nV2pkn发布了新的文献求助10
4秒前
喻亦寒发布了新的文献求助10
4秒前
zhi完成签到,获得积分10
5秒前
岩追研完成签到,获得积分10
5秒前
hahahayi发布了新的文献求助10
5秒前
ohh发布了新的文献求助10
6秒前
zhoushaoyun2000完成签到,获得积分10
6秒前
王大帅哥完成签到,获得积分10
7秒前
7秒前
竹外桃花发布了新的文献求助10
7秒前
Dragon完成签到,获得积分10
8秒前
ding应助正在加载采纳,获得10
8秒前
8秒前
9秒前
空曲发布了新的文献求助10
9秒前
9秒前
10秒前
积极问晴完成签到,获得积分10
12秒前
肥鹏完成签到,获得积分10
12秒前
zeng发布了新的文献求助10
12秒前
xiarifeng123应助潘宇霜采纳,获得60
13秒前
研友_nV2pkn完成签到,获得积分10
13秒前
MILK发布了新的文献求助10
14秒前
活泼岩完成签到,获得积分10
14秒前
sumugeng完成签到,获得积分10
15秒前
虚幻雅绿完成签到,获得积分10
15秒前
17秒前
汤圆圆儿完成签到,获得积分10
18秒前
18秒前
华仔应助单纯的巧荷采纳,获得10
18秒前
123完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587