Whole urine-based multiple cancer diagnosis and metabolite profiling using 3D evolutionary gold nanoarchitecture combined with machine learning-assisted SERS

胶体金 纳米孔 材料科学 纳米技术 检出限 生物医学工程 纳米颗粒 化学 色谱法 医学
作者
Muhammad Shalahuddin Al Ja’farawy,Vo Thi Nhat Linh,Jun-Young Yang,ChaeWon Mun,Seunghun Lee,Sung‐Gyu Park,In Woong Han,Samjin Choi,Min‐Young Lee,Dong‐Ho Kim,Ho Sang Jung
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:412: 135828-135828 被引量:16
标识
DOI:10.1016/j.snb.2024.135828
摘要

To develop onsite applicable cancer diagnosis technologies, a noninvasive human biofluid detection method with high sensitivity and specificity is required, available for classifying cancer from the normal group. Herein, a three-dimensional evolutionary gold nanoarchitecture (3D-EGN) is developed by forming Au nanosponge (AuS) on a 96-well plate, followed by a decoration of Au nanoparticles (AuNPs) evolved with Au nanolamination (AuNL) for high-throughput urine sensing in liquid phase. The 3D-EGN exhibits not only strong electromagnetic field generated from numerous hotspot regions between AuNPs and further enhanced light scattering from multigrain boundaries after lamination process, but also highly volumetric field due to nanoporous structure of AuS, which is advantageous for sensitive liquid-phase SERS detection. SERS activity of the 3D-EGN platform is characterized using malachite green, showing a limit detection of 1.23 × 10-9 M in liquid phase, and excellent uniformities both within single well and well-to-well with relative standard deviation (RSD) values of about 10%. The 3D-EGN platform has been demonstrated for the detection of whole clinical human urine samples, proving effective molecular sensing in the presence of Brownian motion from liquid medium. Subsequently, cancer metabolite candidates are investigated to verify the metabolic alternation of multicancer, including pancreatic, prostate, lung, and colorectal cancers, simultaneously classifying them into five different groups, including normal with an accuracy of 95.6%, using machine-learning methods. The integration of nanomaterials with the conventional clinical platform provides rapid and high-throughput multicancer diagnostic system and opens a new era for noninvasive diseases diagnosis using clinical human biofluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Nor采纳,获得10
刚刚
Akim应助孙伟健采纳,获得10
刚刚
llt发布了新的文献求助10
刚刚
ddx完成签到,获得积分10
1秒前
追尾的猫完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
滕滕发布了新的文献求助10
3秒前
3秒前
会科研的胡萝卜完成签到,获得积分10
3秒前
3秒前
5秒前
顾矜应助粥粥采纳,获得10
5秒前
小鱼完成签到 ,获得积分10
6秒前
小伊001完成签到,获得积分10
6秒前
chengzhiheng完成签到,获得积分10
6秒前
7秒前
弗洛莉娅完成签到,获得积分10
8秒前
完美世界应助宁天问采纳,获得10
8秒前
Jasper应助lasak采纳,获得10
8秒前
chengzhiheng发布了新的文献求助10
8秒前
呵呵完成签到 ,获得积分10
9秒前
哈哈哈完成签到,获得积分10
9秒前
独特南霜发布了新的文献求助10
10秒前
虚荣的泥猴桃完成签到 ,获得积分10
10秒前
孙伟健发布了新的文献求助10
11秒前
深情安青应助Dopamine采纳,获得10
11秒前
da发布了新的文献求助10
11秒前
12秒前
lxy完成签到,获得积分10
13秒前
14秒前
华仔应助hh采纳,获得10
14秒前
学勾巴发布了新的文献求助10
14秒前
凤爪关注了科研通微信公众号
15秒前
天天快乐应助dayrim采纳,获得10
15秒前
16秒前
16秒前
烟花应助ellarqwn采纳,获得10
17秒前
rcf完成签到,获得积分10
17秒前
18秒前
xxfsx应助任侠传采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452