Whole urine-based multiple cancer diagnosis and metabolite profiling using 3D evolutionary gold nanoarchitecture combined with machine learning-assisted SERS

胶体金 纳米孔 材料科学 纳米技术 检出限 生物医学工程 纳米颗粒 化学 色谱法 医学
作者
Muhammad Shalahuddin Al Ja’farawy,Vo Thi Nhat Linh,Jun-Young Yang,ChaeWon Mun,Seunghun Lee,Sung‐Gyu Park,In Woong Han,Samjin Choi,Min‐Young Lee,Dong‐Ho Kim,Ho Sang Jung
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:412: 135828-135828 被引量:16
标识
DOI:10.1016/j.snb.2024.135828
摘要

To develop onsite applicable cancer diagnosis technologies, a noninvasive human biofluid detection method with high sensitivity and specificity is required, available for classifying cancer from the normal group. Herein, a three-dimensional evolutionary gold nanoarchitecture (3D-EGN) is developed by forming Au nanosponge (AuS) on a 96-well plate, followed by a decoration of Au nanoparticles (AuNPs) evolved with Au nanolamination (AuNL) for high-throughput urine sensing in liquid phase. The 3D-EGN exhibits not only strong electromagnetic field generated from numerous hotspot regions between AuNPs and further enhanced light scattering from multigrain boundaries after lamination process, but also highly volumetric field due to nanoporous structure of AuS, which is advantageous for sensitive liquid-phase SERS detection. SERS activity of the 3D-EGN platform is characterized using malachite green, showing a limit detection of 1.23 × 10-9 M in liquid phase, and excellent uniformities both within single well and well-to-well with relative standard deviation (RSD) values of about 10%. The 3D-EGN platform has been demonstrated for the detection of whole clinical human urine samples, proving effective molecular sensing in the presence of Brownian motion from liquid medium. Subsequently, cancer metabolite candidates are investigated to verify the metabolic alternation of multicancer, including pancreatic, prostate, lung, and colorectal cancers, simultaneously classifying them into five different groups, including normal with an accuracy of 95.6%, using machine-learning methods. The integration of nanomaterials with the conventional clinical platform provides rapid and high-throughput multicancer diagnostic system and opens a new era for noninvasive diseases diagnosis using clinical human biofluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deer完成签到,获得积分10
1秒前
杨冠渊完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
xx发布了新的文献求助10
2秒前
田様应助wj采纳,获得10
2秒前
changhaowenzzz完成签到,获得积分10
2秒前
Yusang完成签到,获得积分10
3秒前
ctttt发布了新的文献求助10
3秒前
3秒前
快乐小菜瓜完成签到 ,获得积分10
3秒前
3秒前
3秒前
心落失完成签到,获得积分10
3秒前
研友_ZGAeoL完成签到,获得积分10
4秒前
4秒前
应急食品完成签到,获得积分10
5秒前
Lynn完成签到,获得积分10
6秒前
简单酒窝发布了新的文献求助10
6秒前
小小发布了新的文献求助30
6秒前
小二郎应助wenbin采纳,获得10
6秒前
7秒前
小蘑菇应助ohen67采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
123study0完成签到,获得积分10
7秒前
8秒前
楠楠DAYTOY发布了新的文献求助10
8秒前
Rocky_Qi发布了新的文献求助10
8秒前
cc发布了新的文献求助10
8秒前
杨冠渊发布了新的文献求助10
8秒前
9秒前
清蒸鱼发布了新的文献求助10
9秒前
Hien完成签到,获得积分10
9秒前
9秒前
ilihe应助dtcao采纳,获得10
9秒前
ding应助笨鸟先飞采纳,获得10
9秒前
领导范儿应助allsan采纳,获得20
10秒前
武雨珍发布了新的文献求助30
10秒前
yulia完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279