A Cost-Minimized Task Migration Assignment Mechanism in Blockchain Based Edge Computing System

计算机科学 云计算 分布式计算 边缘计算 能源消耗 延迟(音频) 计算机网络 操作系统 生态学 电信 生物
作者
B.S. Xu,Yan Jin,Lei Yu
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:18 (1)
标识
DOI:10.2174/0126662558292891240409050246
摘要

Background: Cloud computing is usually introduced to execute computing intensive tasks for data processing and data mining. As a supplement to cloud computing, edge computing is provided as a new paradigm to effectively reduce processing latency, energy consumption cost and bandwidth consumption for time-sensitive tasks or resource-sensitive tasks. To better meet such requirements during task assignment in edge computing systems, an intelligent task migration assignment mechanism based on blockchain is proposed, which jointly considers the factors of resource allocation, resource control and credit degree. Methods: In this paper, an optimization problem is firstly constructed to minimize the total cost of completing all tasks under constraints of delay, energy consumption, communication, and credit degree. Here, the terminal node mines computing resources from edge nodes to complete task migration. An incentive method based on blockchain is provided to mobilize the activity of terminal nodes and edge nodes, and to ensure the security of the transaction during migration. The designed allocation rules ensure the fairness of rewards for successfully mining resource. To solve the optimization problem, an intelligent migration algorithm that utilizes a dual “actor-reviewer” neural network on inverse gradient update is proposed which makes the training process more stable and easier to converge. Results: Compared to the existing two benchmark mechanisms, the extensive simulation results indicate that the proposed mechanism based on neural network can converge at a faster speed and achieve the minimal total cost. Conclusion: To satisfy the requirements of delay and energy consumption for computing intensive tasks in edge computing scenarios, an intelligent, blockchain based task migration assignment mechanism with joint resource allocation and control is proposed. To realize this mechanism effectively, a dual “actor-reviewer” neural network algorithm is designed and executed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yk完成签到 ,获得积分10
刚刚
沉静的海豚完成签到,获得积分10
1秒前
徐成建完成签到,获得积分10
2秒前
震动的忆山完成签到,获得积分10
5秒前
yk发布了新的文献求助10
5秒前
七十三度发布了新的文献求助10
5秒前
7秒前
7秒前
思源应助二傻不刮痧采纳,获得10
7秒前
8秒前
9秒前
9秒前
哆啦A梦完成签到 ,获得积分10
10秒前
不安青牛应助雪山飞龙采纳,获得10
11秒前
多情如容发布了新的文献求助10
12秒前
13秒前
幻翎发布了新的文献求助10
15秒前
小呆陶陶完成签到 ,获得积分10
18秒前
852应助一个小胖子采纳,获得10
20秒前
lane完成签到,获得积分10
20秒前
21秒前
CKK发布了新的文献求助10
21秒前
77完成签到,获得积分20
24秒前
24秒前
26秒前
28秒前
唐妮完成签到,获得积分10
28秒前
有魅力荟发布了新的文献求助10
29秒前
30秒前
专注宛凝完成签到,获得积分10
31秒前
星禾吾应助lidapan采纳,获得10
31秒前
33秒前
35秒前
彘shen完成签到 ,获得积分10
35秒前
vexille发布了新的文献求助10
35秒前
77发布了新的文献求助10
35秒前
36秒前
多情如容完成签到,获得积分10
36秒前
方羽应助yyy采纳,获得10
37秒前
leviry发布了新的文献求助10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356273
求助须知:如何正确求助?哪些是违规求助? 2979823
关于积分的说明 8692252
捐赠科研通 2661384
什么是DOI,文献DOI怎么找? 1457177
科研通“疑难数据库(出版商)”最低求助积分说明 674714
邀请新用户注册赠送积分活动 665533