Improving diagnosis and outcome prediction of gastric cancer via multimodal learning using whole slide pathological images and gene expression

计算机科学 人工智能 机器学习 预测建模 深度学习 模式识别(心理学)
作者
Yuzhang Xie,Qingqing Sang,Qian Da,Guoshuai Niu,Shijie Deng,Haoran Feng,Yunqin Chen,Yuanyuan Li,Bingya Liu,Yang Yang,Wentao Dai
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:152: 102871-102871
标识
DOI:10.1016/j.artmed.2024.102871
摘要

For the diagnosis and outcome prediction of gastric cancer (GC), machine learning methods based on whole slide pathological images (WSIs) have shown promising performance and reduced the cost of manual analysis. Nevertheless, accurate prediction of GC outcome may rely on multiple modalities with complementary information, particularly gene expression data. Thus, there is a need to develop multimodal learning methods to enhance prediction performance. In this paper, we collect a dataset from Ruijin Hospital and propose a multimodal learning method for GC diagnosis and outcome prediction, called GaCaMML, which is featured by a cross-modal attention mechanism and Per-Slide training scheme. Additionally, we perform feature attribution analysis via integrated gradient (IG) to identify important input features. The proposed method improves prediction accuracy over the single-modal learning method on three tasks, i.e., survival prediction (by 4.9% on C-index), pathological stage classification (by 11.6% on accuracy), and lymph node classification (by 12.0% on accuracy). Especially, the Per-Slide strategy addresses the issue of a high WSI-to-patient ratio and leads to much better results compared with the Per-Person training scheme. For the interpretable analysis, we find that although WSIs dominate the prediction for most samples, there is still a substantial portion of samples whose prediction highly relies on gene expression information. This study demonstrates the great potential of multimodal learning in GC-related prediction tasks and investigates the contribution of WSIs and gene expression, respectively, which not only shows how the model makes a decision but also provides insights into the association between macroscopic pathological phenotypes and microscopic molecular features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈军应助熊熊采纳,获得20
1秒前
1秒前
2秒前
。。。完成签到,获得积分10
2秒前
杨觅发布了新的文献求助10
2秒前
西北孤傲的狼完成签到,获得积分10
3秒前
爱静静应助禹代秋采纳,获得10
3秒前
宿帅帅完成签到,获得积分10
3秒前
punster发布了新的文献求助10
3秒前
zzz发布了新的文献求助10
3秒前
3秒前
哇啦哇啦完成签到,获得积分10
3秒前
上官若男应助子非鱼采纳,获得10
3秒前
finger完成签到,获得积分10
3秒前
深情安青应助黄宇阳采纳,获得30
4秒前
4秒前
共享精神应助风中天宇采纳,获得10
5秒前
5秒前
zc北完成签到,获得积分10
5秒前
桐桐应助孟孟采纳,获得10
5秒前
Akim应助ss采纳,获得10
6秒前
6秒前
lhm发布了新的文献求助10
6秒前
爱学习的婷完成签到 ,获得积分10
7秒前
7秒前
小黑完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
科研通AI2S应助巴啦啦采纳,获得10
10秒前
Ava应助赵某人采纳,获得10
10秒前
花花发布了新的文献求助10
11秒前
cxh完成签到,获得积分10
11秒前
贤惠的早晨完成签到,获得积分20
12秒前
江鹿柒柒发布了新的文献求助10
12秒前
子非鱼完成签到,获得积分10
12秒前
12秒前
钱俊发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655