Improving diagnosis and outcome prediction of gastric cancer via multimodal learning using whole slide pathological images and gene expression

计算机科学 人工智能 机器学习 预测建模 深度学习 模式识别(心理学)
作者
Yuzhang Xie,Qingqing Sang,Qian Da,Guoshuai Niu,Shijie Deng,Haoran Feng,Yunqin Chen,Yuanyuan Li,Bingya Liu,Yang Yang,Wentao Dai
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:152: 102871-102871
标识
DOI:10.1016/j.artmed.2024.102871
摘要

For the diagnosis and outcome prediction of gastric cancer (GC), machine learning methods based on whole slide pathological images (WSIs) have shown promising performance and reduced the cost of manual analysis. Nevertheless, accurate prediction of GC outcome may rely on multiple modalities with complementary information, particularly gene expression data. Thus, there is a need to develop multimodal learning methods to enhance prediction performance. In this paper, we collect a dataset from Ruijin Hospital and propose a multimodal learning method for GC diagnosis and outcome prediction, called GaCaMML, which is featured by a cross-modal attention mechanism and Per-Slide training scheme. Additionally, we perform feature attribution analysis via integrated gradient (IG) to identify important input features. The proposed method improves prediction accuracy over the single-modal learning method on three tasks, i.e., survival prediction (by 4.9% on C-index), pathological stage classification (by 11.6% on accuracy), and lymph node classification (by 12.0% on accuracy). Especially, the Per-Slide strategy addresses the issue of a high WSI-to-patient ratio and leads to much better results compared with the Per-Person training scheme. For the interpretable analysis, we find that although WSIs dominate the prediction for most samples, there is still a substantial portion of samples whose prediction highly relies on gene expression information. This study demonstrates the great potential of multimodal learning in GC-related prediction tasks and investigates the contribution of WSIs and gene expression, respectively, which not only shows how the model makes a decision but also provides insights into the association between macroscopic pathological phenotypes and microscopic molecular features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nightmare完成签到,获得积分20
刚刚
哭泣笑柳发布了新的文献求助10
1秒前
nightmare发布了新的文献求助10
3秒前
大橙子发布了新的文献求助10
6秒前
8秒前
Zhh完成签到 ,获得积分10
8秒前
Tina完成签到,获得积分10
10秒前
微生完成签到 ,获得积分10
10秒前
11秒前
chhzz完成签到 ,获得积分10
12秒前
飞舞伤寒发布了新的文献求助20
12秒前
曾珍发布了新的文献求助10
14秒前
qwe完成签到,获得积分10
15秒前
Xdz完成签到 ,获得积分10
15秒前
cai完成签到 ,获得积分10
18秒前
雨恋凡尘完成签到,获得积分0
21秒前
羊羔肉完成签到,获得积分10
23秒前
胖丁完成签到,获得积分10
23秒前
笨笨凡松完成签到,获得积分10
26秒前
飞舞伤寒完成签到,获得积分10
26秒前
贝利亚完成签到,获得积分10
28秒前
喜多多的小眼静完成签到 ,获得积分10
28秒前
28秒前
Dsunflower完成签到 ,获得积分10
29秒前
羊羔肉发布了新的文献求助50
30秒前
半夏发布了新的文献求助10
30秒前
31秒前
31秒前
大橙子发布了新的文献求助10
32秒前
星辰大海应助贝利亚采纳,获得10
32秒前
33秒前
sunny心晴完成签到 ,获得积分10
35秒前
独特的凝云完成签到 ,获得积分10
35秒前
TheDing完成签到,获得积分10
36秒前
传奇3应助lenetivy采纳,获得10
38秒前
积极的忆曼完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
酒剑仙完成签到,获得积分10
39秒前
YANGMJ完成签到,获得积分10
40秒前
xialuoke完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022