Computer vision-based real-time monitoring for swivel construction of bridges: from laboratory study to a pilot application

桥(图论) 旋转(数学) 过程(计算) 模拟 工程类 计算机科学 人工智能 医学 内科学 操作系统
作者
Shilong Zhang,Changyong Liu,Kailun Feng,Chunlai Xia,Yuyin Wang,Qinghe Wang
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
标识
DOI:10.1108/ecam-10-2022-0992
摘要

Purpose The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use. Design/methodology/approach This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability. Findings In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application. Originality/value In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助Adzuki0812采纳,获得10
1秒前
2秒前
霸气鞯发布了新的文献求助10
2秒前
123321321345完成签到,获得积分10
3秒前
务实的蛋挞完成签到,获得积分20
4秒前
4秒前
wl17865313955发布了新的文献求助10
5秒前
Catherine_Song完成签到 ,获得积分10
6秒前
冰点完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
结实乐荷完成签到,获得积分20
10秒前
zhw297发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
durance完成签到,获得积分10
15秒前
酷波er应助春亦晚采纳,获得10
15秒前
15秒前
16秒前
kiteWYL完成签到,获得积分10
16秒前
贪玩的小蜜蜂完成签到,获得积分10
17秒前
小蘑菇应助xixi采纳,获得10
17秒前
17秒前
Zhua子完成签到,获得积分10
17秒前
17秒前
jovrtic发布了新的文献求助10
17秒前
英姑应助聪慧仇天采纳,获得10
18秒前
18秒前
鲜艳的梦柏完成签到,获得积分10
19秒前
Adzuki0812发布了新的文献求助10
20秒前
9089090发布了新的文献求助10
20秒前
打打应助罗氏集团采纳,获得10
20秒前
21秒前
22秒前
daniel完成签到,获得积分10
22秒前
xy完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548123
求助须知:如何正确求助?哪些是违规求助? 4633417
关于积分的说明 14631222
捐赠科研通 4575059
什么是DOI,文献DOI怎么找? 2508825
邀请新用户注册赠送积分活动 1485072
关于科研通互助平台的介绍 1456096