Cost-Sensitive Weighted Contrastive Learning Based on Graph Convolutional Networks for Imbalanced Alzheimer’s Disease Staging

计算机科学 人工智能 图形 卷积神经网络 模式识别(心理学) 机器学习 自然语言处理 理论计算机科学
作者
Yan Hu,Jun Wang,Hao Zhu,Juncheng Li,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3389747
摘要

Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed using the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kristine完成签到 ,获得积分10
刚刚
霸气的断缘完成签到,获得积分10
刚刚
puzhongjiMiQ发布了新的文献求助10
刚刚
puzhongjiMiQ发布了新的文献求助10
刚刚
puzhongjiMiQ发布了新的文献求助10
刚刚
puzhongjiMiQ发布了新的文献求助10
1秒前
puzhongjiMiQ发布了新的文献求助30
1秒前
震动的沉鱼完成签到 ,获得积分10
1秒前
JamesPei应助Eicky采纳,获得10
1秒前
化工人发布了新的文献求助10
1秒前
puzhongjiMiQ发布了新的文献求助10
2秒前
puzhongjiMiQ发布了新的文献求助10
2秒前
puzhongjiMiQ发布了新的文献求助10
2秒前
puzhongjiMiQ发布了新的文献求助10
2秒前
卡乐瑞咩吹可完成签到,获得积分10
3秒前
3秒前
lezbj99发布了新的文献求助10
3秒前
4秒前
lzc完成签到 ,获得积分10
4秒前
漫漫完成签到 ,获得积分10
4秒前
司徒不二完成签到,获得积分0
5秒前
www完成签到,获得积分10
6秒前
小小牛完成签到,获得积分10
6秒前
6秒前
7秒前
糊涂的皮卡丘完成签到 ,获得积分10
7秒前
呜呜呜发布了新的文献求助10
8秒前
8秒前
无情的若枫完成签到,获得积分10
9秒前
更好的我完成签到,获得积分10
9秒前
9秒前
Supreme完成签到,获得积分10
10秒前
科目三应助化工人采纳,获得10
10秒前
没有人歌颂完成签到,获得积分10
11秒前
优秀司炉员完成签到 ,获得积分10
11秒前
刻苦的新烟完成签到 ,获得积分10
11秒前
zero完成签到,获得积分10
11秒前
科研人完成签到 ,获得积分10
12秒前
郭志强完成签到,获得积分10
13秒前
欣喜乐天发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147001
求助须知:如何正确求助?哪些是违规求助? 2798279
关于积分的说明 7827502
捐赠科研通 2454919
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565