Cost-Sensitive Weighted Contrastive Learning Based on Graph Convolutional Networks for Imbalanced Alzheimer’s Disease Staging

判别式 计算机科学 人工智能 功能磁共振成像 图形 神经影像学 卷积神经网络 班级(哲学) 模式识别(心理学) 机器学习 理论计算机科学 神经科学 心理学
作者
Yan Hu,Jun Wang,Hao Zhu,Juncheng Li,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3126-3136 被引量:1
标识
DOI:10.1109/tmi.2024.3389747
摘要

Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed using the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lailai完成签到,获得积分10
刚刚
Min完成签到,获得积分10
1秒前
1秒前
1秒前
yyyy发布了新的文献求助30
2秒前
April驳回了归尘应助
2秒前
Yyyyyyyyy应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
yar应助科研通管家采纳,获得10
2秒前
2秒前
Gauss应助科研通管家采纳,获得30
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得20
2秒前
Hello应助科研通管家采纳,获得10
3秒前
缓慢如南应助科研通管家采纳,获得10
3秒前
栀夏完成签到,获得积分10
3秒前
yar应助科研通管家采纳,获得10
3秒前
桐桐应助杨杨采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
yar应助科研通管家采纳,获得10
3秒前
iNk应助科研通管家采纳,获得20
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
musejie应助科研通管家采纳,获得10
3秒前
自信夜春完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
六六安安完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
时安发布了新的文献求助10
4秒前
xiaoluoluo完成签到,获得积分10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582