Cost-Sensitive Weighted Contrastive Learning Based on Graph Convolutional Networks for Imbalanced Alzheimer’s Disease Staging

判别式 计算机科学 人工智能 功能磁共振成像 图形 神经影像学 卷积神经网络 班级(哲学) 模式识别(心理学) 机器学习 理论计算机科学 神经科学 心理学
作者
Yan Hu,Jun Wang,Hao Zhu,Juncheng Li,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3126-3136 被引量:1
标识
DOI:10.1109/tmi.2024.3389747
摘要

Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed using the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助luochunsheng采纳,获得10
刚刚
longer发布了新的文献求助10
1秒前
2秒前
南风未起发布了新的文献求助10
2秒前
英姑应助优美紫槐采纳,获得10
2秒前
哭泣又柔发布了新的文献求助10
2秒前
3秒前
LG发布了新的文献求助10
3秒前
梦想成为高知悍妇完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
浪子应助火星上送终采纳,获得10
7秒前
9秒前
9秒前
失眠的契完成签到,获得积分10
10秒前
10秒前
10秒前
英俊的铭应助南风未起采纳,获得10
11秒前
Youlu发布了新的文献求助10
13秒前
哭泣又柔完成签到,获得积分10
14秒前
Miss-Li完成签到,获得积分10
14秒前
15秒前
15秒前
wfengfengw发布了新的文献求助10
15秒前
15秒前
KerwinYang发布了新的文献求助10
16秒前
16秒前
17秒前
彭于晏应助Youlu采纳,获得10
17秒前
共享精神应助江上采纳,获得10
18秒前
18秒前
摇匀发布了新的文献求助10
19秒前
duoduoyishan发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
DAIXI761419完成签到,获得积分10
20秒前
zxx完成签到,获得积分10
20秒前
Jasper应助益生菌小哥采纳,获得10
20秒前
xc完成签到,获得积分10
20秒前
yaoeer完成签到,获得积分10
20秒前
田様应助牛牛牛采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720530
求助须知:如何正确求助?哪些是违规求助? 5260834
关于积分的说明 15291524
捐赠科研通 4869955
什么是DOI,文献DOI怎么找? 2615129
邀请新用户注册赠送积分活动 1565084
关于科研通互助平台的介绍 1522191