Cost-Sensitive Weighted Contrastive Learning Based on Graph Convolutional Networks for Imbalanced Alzheimer’s Disease Staging

判别式 计算机科学 人工智能 功能磁共振成像 图形 神经影像学 卷积神经网络 班级(哲学) 模式识别(心理学) 机器学习 理论计算机科学 神经科学 心理学
作者
Yan Hu,Jun Wang,Hao Zhu,Juncheng Li,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3126-3136 被引量:1
标识
DOI:10.1109/tmi.2024.3389747
摘要

Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed using the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
公西傲蕾完成签到,获得积分10
1秒前
1秒前
2秒前
景平完成签到,获得积分10
2秒前
ri_290发布了新的文献求助10
2秒前
3秒前
3秒前
赘婿应助咩咩咩采纳,获得30
4秒前
王w应助诚心文博采纳,获得30
4秒前
5秒前
龙卷风摧毁停车场完成签到,获得积分10
5秒前
一指墨发布了新的文献求助10
6秒前
科目三应助唐俊杰采纳,获得10
6秒前
cc应助方方方方方采纳,获得50
6秒前
夏沫完成签到,获得积分10
6秒前
7秒前
sherry发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
乐乐应助yunshui采纳,获得10
9秒前
HSY完成签到,获得积分10
9秒前
wanci应助BeautyZ采纳,获得10
10秒前
11秒前
11秒前
CodeCraft应助WeiPaiHWuFXZ采纳,获得10
11秒前
赘婿应助含蓄的大米采纳,获得10
11秒前
12秒前
12秒前
13秒前
田様应助张晓年采纳,获得10
13秒前
13秒前
一指墨完成签到,获得积分10
14秒前
爆米花应助ddd采纳,获得10
14秒前
14秒前
海纳百川完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
冬易发布了新的文献求助10
14秒前
欣喜冷卉完成签到,获得积分20
15秒前
peng完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027