Cost-Sensitive Weighted Contrastive Learning Based on Graph Convolutional Networks for Imbalanced Alzheimer’s Disease Staging

判别式 计算机科学 人工智能 功能磁共振成像 图形 神经影像学 卷积神经网络 班级(哲学) 模式识别(心理学) 机器学习 理论计算机科学 神经科学 心理学
作者
Yan Hu,Jun Wang,Hao Zhu,Juncheng Li,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3126-3136 被引量:1
标识
DOI:10.1109/tmi.2024.3389747
摘要

Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed using the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助哈no采纳,获得10
1秒前
完美世界应助YE采纳,获得10
1秒前
wxn发布了新的文献求助10
1秒前
Ava应助Hinsen采纳,获得10
2秒前
2秒前
伊伊发布了新的文献求助10
3秒前
www111发布了新的文献求助10
4秒前
wxn完成签到,获得积分20
4秒前
高访蕊完成签到,获得积分10
4秒前
顾矜应助能干储采纳,获得10
4秒前
5秒前
myelin发布了新的文献求助10
5秒前
风格化橙发布了新的文献求助10
5秒前
彭于晏应助举人烧烤采纳,获得10
6秒前
科目三应助wxn采纳,获得10
6秒前
QC完成签到,获得积分10
7秒前
9秒前
赘婿应助暴躁的振家采纳,获得10
9秒前
10秒前
10秒前
12秒前
qh0305完成签到,获得积分10
12秒前
12秒前
烟花应助dichloro采纳,获得10
13秒前
YE发布了新的文献求助10
13秒前
蓝绝发布了新的文献求助20
13秒前
Mouser完成签到 ,获得积分10
14秒前
鸢尾发布了新的文献求助10
14秒前
二枫忆桑完成签到,获得积分10
14秒前
15秒前
佳佳完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
max发布了新的文献求助10
16秒前
fjnm完成签到,获得积分10
17秒前
Steve完成签到,获得积分10
17秒前
17秒前
欣喜的火龙果完成签到,获得积分10
17秒前
我可爱死学习了完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707