清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cost-Sensitive Weighted Contrastive Learning Based on Graph Convolutional Networks for Imbalanced Alzheimer’s Disease Staging

判别式 计算机科学 人工智能 功能磁共振成像 图形 神经影像学 卷积神经网络 班级(哲学) 模式识别(心理学) 机器学习 理论计算机科学 神经科学 心理学
作者
Yan Hu,Jun Wang,Hao Zhu,Juncheng Li,Jun Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3126-3136 被引量:1
标识
DOI:10.1109/tmi.2024.3389747
摘要

Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed using the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
33秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Tom完成签到 ,获得积分10
1分钟前
曙光完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
儒雅海秋完成签到,获得积分10
4分钟前
螃蟹One完成签到 ,获得积分10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
yindi1991完成签到 ,获得积分10
5分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
科研通AI5应助小巧的风华采纳,获得10
5分钟前
6分钟前
6分钟前
随心所欲完成签到 ,获得积分10
6分钟前
风清扬应助小巧的风华采纳,获得30
6分钟前
zzz完成签到,获得积分20
6分钟前
小巧的风华完成签到,获得积分20
6分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
7分钟前
hhuajw完成签到,获得积分10
7分钟前
zzz发布了新的文献求助10
7分钟前
和气生财君完成签到 ,获得积分10
8分钟前
财路通八方完成签到 ,获得积分10
8分钟前
9分钟前
两个榴莲完成签到,获得积分0
9分钟前
10分钟前
123发布了新的文献求助10
10分钟前
胡菲诺发布了新的文献求助10
10分钟前
ceeray23应助科研通管家采纳,获得10
11分钟前
Jenny完成签到 ,获得积分10
11分钟前
123关闭了123文献求助
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187234
求助须知:如何正确求助?哪些是违规求助? 4372086
关于积分的说明 13612892
捐赠科研通 4225047
什么是DOI,文献DOI怎么找? 2317321
邀请新用户注册赠送积分活动 1315994
关于科研通互助平台的介绍 1265461