DTKGIN: Predicting drug-target interactions based on knowledge graph and intent graph

计算机科学 图形 药品 知识图 代表(政治) 机器学习 理论计算机科学 数据挖掘 人工智能 医学 药理学 政治学 政治 法学
作者
Yi Luo,Guihua Duan,Qichang Zhao,Xuehua Bi,Jianxin Wang
出处
期刊:Methods [Elsevier BV]
卷期号:226: 21-27
标识
DOI:10.1016/j.ymeth.2024.04.010
摘要

Knowledge graph intent graph attention mechanism Predicting drug-target interactions (DTIs) plays a crucial role in drug discovery and drug development. Considering the high cost and risk of biological experiments, developing computational approaches to explore the interactions between drugs and targets can effectively reduce the time and cost of drug development. Recently, many methods have made significant progress in predicting DTIs. However, existing approaches still suffer from the high sparsity of DTI datasets and the cold start problem. In this paper, we develop a new model to predict drug-target interactions via a knowledge graph and intent graph named DTKGIN. Our method can effectively capture biological environment information for targets and drugs by mining their associated relations in the knowledge graph and considering drug-target interactions at a fine-grained level in the intent graph. DTKGIN learns the representation of drugs and targets from the knowledge graph and the intent graph. Then the probabilities of interactions between drugs and targets are obtained through the inner product of the representation of drugs and targets. Experimental results show that our proposed method outperforms other state-of-the-art methods in 10-fold cross-validation, especially in cold-start experimental settings. Furthermore, the case studies demonstrate the effectiveness of DTKGIN in predicting potential drug-target interactions. The code is available on GitHub: https://github.com/Royluoyi123/DTKGIN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜蜜海蓝发布了新的文献求助10
刚刚
刚刚
dddd发布了新的文献求助10
1秒前
1秒前
1秒前
茉莉花发布了新的文献求助10
2秒前
MOFS完成签到,获得积分10
2秒前
科研通AI5应助lpf采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
怡然觅柔发布了新的文献求助10
3秒前
3秒前
3秒前
lee完成签到,获得积分10
3秒前
3秒前
鱼儿游完成签到 ,获得积分10
3秒前
科研通AI5应助11采纳,获得10
3秒前
4秒前
木木发布了新的文献求助10
5秒前
wanci应助愉快的鸭采纳,获得10
5秒前
lovecharlie发布了新的文献求助10
6秒前
实验室应助天天采纳,获得200
7秒前
7秒前
Morgans00发布了新的文献求助10
8秒前
8秒前
茉莉花完成签到,获得积分10
8秒前
8秒前
韩老慢发布了新的文献求助10
8秒前
盐碱地杂草完成签到,获得积分10
8秒前
倪妮发布了新的文献求助10
9秒前
9秒前
TOF发布了新的文献求助10
9秒前
zs完成签到 ,获得积分10
10秒前
12秒前
脑洞疼应助zzz627采纳,获得10
12秒前
12秒前
拜拜拜发布了新的文献求助20
12秒前
CodeCraft应助lovecharlie采纳,获得10
13秒前
Hello应助如风随水采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075569
求助须知:如何正确求助?哪些是违规求助? 4295278
关于积分的说明 13384033
捐赠科研通 4116979
什么是DOI,文献DOI怎么找? 2254606
邀请新用户注册赠送积分活动 1259239
关于科研通互助平台的介绍 1192002