High-Quality and Diverse Few-Shot Image Generation via Masked Discrimination

鉴别器 过度拟合 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像质量 发电机(电路理论) 图像(数学) 特征提取 计算机视觉 质量(理念) 失真(音乐) 功率(物理) 人工神经网络 电信 探测器 认识论 量子力学 物理 哲学 放大器 带宽(计算) 语言学 计算机网络
作者
Jingyuan Zhu,Huimin Ma,Jiansheng Chen,Jian Yuan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2950-2965 被引量:10
标识
DOI:10.1109/tip.2024.3385295
摘要

Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicate them, leading to severe diversity degradation. Several methods have been proposed to relieve overfitting by adapting GANs pre-trained on large source domains to target domains using limited real samples. This work presents masked discrimination to realize few-shot GAN adaptation, which is the first feature-level augmentation method for generative tasks. Random masks are applied to features extracted by the discriminator from input images. We aim to encourage the discriminator to judge various images that share partially common features with training samples as realistic. Correspondingly, the generator is guided to generate diverse images instead of replicating training samples. In addition, we employ a cross-domain consistency loss for the discriminator to keep relative distances between generated samples in its feature space. It strengthens global image discrimination and guides adapted GANs to preserve more information learned from source domains for higher image quality, resulting in better cross-domain correspondence. The effectiveness of our approach is demonstrated both qualitatively and quantitatively with higher quality and greater diversity on a series of few-shot image generation tasks than prior methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Finley采纳,获得10
刚刚
刚刚
Queena完成签到,获得积分10
1秒前
Aiuuu关注了科研通微信公众号
2秒前
mm关注了科研通微信公众号
2秒前
花花屯屯发布了新的文献求助10
3秒前
袁小二完成签到 ,获得积分10
3秒前
鳗鱼凌旋发布了新的文献求助30
4秒前
4秒前
搜集达人应助Wang采纳,获得10
5秒前
5秒前
6秒前
泡泡糖发布了新的文献求助10
7秒前
负责的凌波应助add采纳,获得10
7秒前
OMR123发布了新的文献求助10
8秒前
将个烂就发布了新的文献求助10
8秒前
dilli发布了新的文献求助10
8秒前
思源应助勤恳依霜采纳,获得10
9秒前
混紫发布了新的文献求助10
9秒前
10秒前
12秒前
美好斓发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
顾矜应助小枣采纳,获得10
14秒前
XXXX完成签到,获得积分10
15秒前
CodeCraft应助混紫采纳,获得10
16秒前
17秒前
Aiuuu发布了新的文献求助10
17秒前
saturn发布了新的文献求助10
17秒前
17秒前
健忘洋葱完成签到 ,获得积分10
18秒前
小猫头鹰发布了新的文献求助10
19秒前
Wang发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
77发布了新的文献求助10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330878
求助须知:如何正确求助?哪些是违规求助? 4470311
关于积分的说明 13912731
捐赠科研通 4363570
什么是DOI,文献DOI怎么找? 2397082
邀请新用户注册赠送积分活动 1390479
关于科研通互助平台的介绍 1361163