High-Quality and Diverse Few-Shot Image Generation via Masked Discrimination

鉴别器 过度拟合 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像质量 发电机(电路理论) 图像(数学) 特征提取 计算机视觉 质量(理念) 失真(音乐) 功率(物理) 人工神经网络 电信 探测器 认识论 量子力学 物理 哲学 放大器 带宽(计算) 语言学 计算机网络
作者
Jingyuan Zhu,Huimin Ma,Jiansheng Chen,Jian Yuan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2950-2965 被引量:10
标识
DOI:10.1109/tip.2024.3385295
摘要

Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicate them, leading to severe diversity degradation. Several methods have been proposed to relieve overfitting by adapting GANs pre-trained on large source domains to target domains using limited real samples. This work presents masked discrimination to realize few-shot GAN adaptation, which is the first feature-level augmentation method for generative tasks. Random masks are applied to features extracted by the discriminator from input images. We aim to encourage the discriminator to judge various images that share partially common features with training samples as realistic. Correspondingly, the generator is guided to generate diverse images instead of replicating training samples. In addition, we employ a cross-domain consistency loss for the discriminator to keep relative distances between generated samples in its feature space. It strengthens global image discrimination and guides adapted GANs to preserve more information learned from source domains for higher image quality, resulting in better cross-domain correspondence. The effectiveness of our approach is demonstrated both qualitatively and quantitatively with higher quality and greater diversity on a series of few-shot image generation tasks than prior methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zyun发布了新的文献求助30
1秒前
2秒前
飞翔的小鸟完成签到 ,获得积分10
2秒前
2秒前
笑看风云完成签到,获得积分10
3秒前
4秒前
error完成签到 ,获得积分10
5秒前
苏苏发布了新的文献求助10
5秒前
rose发布了新的文献求助30
5秒前
jou发布了新的文献求助10
5秒前
乐观小之应助夏傥采纳,获得10
7秒前
lzy完成签到,获得积分10
7秒前
7秒前
不倦应助超级无敌幸运星采纳,获得10
8秒前
故意不上钩的鱼应助小兵采纳,获得10
8秒前
小青椒应助Mesting采纳,获得30
8秒前
9秒前
9秒前
叮叮当当应助善良的发带采纳,获得20
9秒前
11秒前
11秒前
11秒前
Ava应助NGU采纳,获得10
11秒前
xiaopihaier完成签到,获得积分10
13秒前
14秒前
好久发布了新的文献求助10
14秒前
研友_VZG7GZ应助lijingyi采纳,获得10
14秒前
15秒前
机灵班应助zwk采纳,获得10
15秒前
shan完成签到,获得积分10
15秒前
Ava应助gtflbk采纳,获得10
15秒前
兔子发布了新的文献求助10
16秒前
不见高山完成签到,获得积分10
17秒前
19秒前
绵绵发布了新的文献求助10
19秒前
zyun完成签到,获得积分10
20秒前
务实的绮山完成签到,获得积分10
20秒前
21秒前
gjw应助呜呼啦呼采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403