已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

High-quality and Diverse Few-shot Image Generation via Masked Discrimination

鉴别器 过度拟合 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像质量 发电机(电路理论) 图像(数学) 特征提取 计算机视觉 质量(理念) 失真(音乐) 功率(物理) 人工神经网络 物理 量子力学 电信 放大器 语言学 哲学 计算机网络 认识论 带宽(计算) 探测器
作者
Jingyuan Zhu,Huimin Ma,Jiansheng Chen,Jian Yuan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3385295
摘要

Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicate them, leading to severe diversity degradation. Several methods have been proposed to relieve overfitting by adapting GANs pre-trained on large source domains to target domains using limited real samples. This work presents masked discrimination to realize few-shot GAN adaptation, which is the first feature-level augmentation method for generative tasks. Random masks are applied to features extracted by the discriminator from input images. We aim to encourage the discriminator to judge various images that share partially common features with training samples as realistic. Correspondingly, the generator is guided to generate diverse images instead of replicating training samples. In addition, we employ a cross-domain consistency loss for the discriminator to keep relative distances between generated samples in its feature space. It strengthens global image discrimination and guides adapted GANs to preserve more information learned from source domains for higher image quality, resulting in better cross-domain correspondence. The effectiveness of our approach is demonstrated both qualitatively and quantitatively with higher quality and greater diversity on a series of few-shot image generation tasks than prior methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木卯子完成签到,获得积分10
1秒前
土豪的灵竹完成签到 ,获得积分10
3秒前
Moonpie完成签到,获得积分10
4秒前
ying818k完成签到 ,获得积分10
4秒前
5秒前
张绵羊完成签到 ,获得积分20
5秒前
润润润完成签到 ,获得积分10
5秒前
ll应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
木卯子发布了新的文献求助10
6秒前
Cain发布了新的文献求助10
7秒前
图图完成签到,获得积分10
7秒前
笨笨的荧荧完成签到 ,获得积分10
8秒前
123发布了新的文献求助10
9秒前
Lucas应助寂林风刃采纳,获得10
9秒前
Joshua完成签到,获得积分0
9秒前
赝品也烂漫完成签到,获得积分10
10秒前
广州小肥羊完成签到 ,获得积分10
11秒前
萌小孩完成签到,获得积分10
11秒前
snail完成签到,获得积分10
11秒前
12秒前
ding应助kelvin采纳,获得50
12秒前
毓香谷的春天完成签到 ,获得积分0
13秒前
Splaink完成签到 ,获得积分10
13秒前
粥粥完成签到 ,获得积分10
15秒前
兜里没糖了完成签到 ,获得积分10
15秒前
17秒前
Niuniu完成签到,获得积分20
17秒前
18秒前
kittency完成签到 ,获得积分10
20秒前
wanci应助nana采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968146
求助须知:如何正确求助?哪些是违规求助? 3513140
关于积分的说明 11166611
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794192
邀请新用户注册赠送积分活动 874904
科研通“疑难数据库(出版商)”最低求助积分说明 804629