High-quality and Diverse Few-shot Image Generation via Masked Discrimination

鉴别器 过度拟合 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像质量 发电机(电路理论) 图像(数学) 特征提取 计算机视觉 质量(理念) 失真(音乐) 功率(物理) 人工神经网络 电信 探测器 认识论 量子力学 物理 哲学 放大器 带宽(计算) 语言学 计算机网络
作者
Jingyuan Zhu,Huimin Ma,Jiansheng Chen,Jian Yuan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3385295
摘要

Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicate them, leading to severe diversity degradation. Several methods have been proposed to relieve overfitting by adapting GANs pre-trained on large source domains to target domains using limited real samples. This work presents masked discrimination to realize few-shot GAN adaptation, which is the first feature-level augmentation method for generative tasks. Random masks are applied to features extracted by the discriminator from input images. We aim to encourage the discriminator to judge various images that share partially common features with training samples as realistic. Correspondingly, the generator is guided to generate diverse images instead of replicating training samples. In addition, we employ a cross-domain consistency loss for the discriminator to keep relative distances between generated samples in its feature space. It strengthens global image discrimination and guides adapted GANs to preserve more information learned from source domains for higher image quality, resulting in better cross-domain correspondence. The effectiveness of our approach is demonstrated both qualitatively and quantitatively with higher quality and greater diversity on a series of few-shot image generation tasks than prior methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ermu应助felix采纳,获得10
刚刚
毛毛弟发布了新的文献求助10
刚刚
曾无忧应助felix采纳,获得10
刚刚
wjx发布了新的文献求助10
1秒前
1秒前
激动的跳跳糖完成签到 ,获得积分10
2秒前
2秒前
ZeKaWa应助HY采纳,获得10
3秒前
4秒前
xxy发布了新的文献求助30
4秒前
4秒前
Tiramisu628发布了新的文献求助10
5秒前
李健应助小娅娅采纳,获得10
5秒前
冯123发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
英勇的飞扬完成签到,获得积分10
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Libra应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
娜娜发布了新的文献求助10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
DijiaXu应助科研通管家采纳,获得10
7秒前
Tourist应助科研通管家采纳,获得150
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得30
7秒前
田様应助飞云采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874