High-Quality and Diverse Few-Shot Image Generation via Masked Discrimination

鉴别器 过度拟合 计算机科学 人工智能 模式识别(心理学) 特征(语言学) 图像质量 发电机(电路理论) 图像(数学) 特征提取 计算机视觉 质量(理念) 失真(音乐) 功率(物理) 人工神经网络 电信 探测器 认识论 量子力学 物理 哲学 放大器 带宽(计算) 语言学 计算机网络
作者
Jingyuan Zhu,Huimin Ma,Jiansheng Chen,Jian Yuan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2950-2965 被引量:10
标识
DOI:10.1109/tip.2024.3385295
摘要

Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicate them, leading to severe diversity degradation. Several methods have been proposed to relieve overfitting by adapting GANs pre-trained on large source domains to target domains using limited real samples. This work presents masked discrimination to realize few-shot GAN adaptation, which is the first feature-level augmentation method for generative tasks. Random masks are applied to features extracted by the discriminator from input images. We aim to encourage the discriminator to judge various images that share partially common features with training samples as realistic. Correspondingly, the generator is guided to generate diverse images instead of replicating training samples. In addition, we employ a cross-domain consistency loss for the discriminator to keep relative distances between generated samples in its feature space. It strengthens global image discrimination and guides adapted GANs to preserve more information learned from source domains for higher image quality, resulting in better cross-domain correspondence. The effectiveness of our approach is demonstrated both qualitatively and quantitatively with higher quality and greater diversity on a series of few-shot image generation tasks than prior methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助vagabond采纳,获得10
1秒前
juan发布了新的文献求助10
1秒前
WSYang完成签到,获得积分10
2秒前
ZYP发布了新的文献求助10
4秒前
4秒前
5秒前
wyz发布了新的文献求助10
7秒前
Accept完成签到,获得积分20
7秒前
9秒前
9秒前
幻__完成签到 ,获得积分10
9秒前
森莺完成签到 ,获得积分10
9秒前
irisy发布了新的文献求助10
10秒前
程瑞哲发布了新的文献求助10
11秒前
12秒前
12秒前
请问完成签到,获得积分10
13秒前
lalala发布了新的文献求助10
13秒前
Taoyu完成签到 ,获得积分10
16秒前
白啦啦完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
万能图书馆应助bubble采纳,获得10
19秒前
21秒前
Alexander完成签到,获得积分10
25秒前
文静曼安发布了新的文献求助10
25秒前
26秒前
我是老大应助juan采纳,获得10
26秒前
觉主发布了新的文献求助10
26秒前
29秒前
29秒前
lalala完成签到,获得积分20
30秒前
南吕完成签到 ,获得积分10
30秒前
东东完成签到,获得积分10
31秒前
yin景景发布了新的文献求助10
33秒前
薯条完成签到,获得积分10
34秒前
元舒甜完成签到,获得积分10
34秒前
35秒前
紫薰完成签到,获得积分10
37秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008