Research on concrete early shrinkage characteristics based on machine learning algorithms for multi-objective optimization

收缩率 算法 计算机科学 优化算法 机器学习 人工智能 结构工程 工程制图 工程类 数学优化 数学
作者
Jianqun Wang,Heng Liu,Junbo Sun,Bo Huang,Yufei Wang,Hongyu Zhao,Mohamed Saafi,Xiangyu Wang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:89: 109415-109415 被引量:6
标识
DOI:10.1016/j.jobe.2024.109415
摘要

Cracking phenomena in tunnel side wall structures (TSWS) increasingly jeopardize their longevity due to water leakage, reinforcement corrosion, and eventual collapse. The primary contributor, early-age shrinkage (EAS) induced by hydration reactions, significantly undermines structural stability and durability. The integration of expansion agents (EA) and fibers presents a low-cost, efficient strategy to counteract EAS-induced cracking. Despite its promise, limited research on the influencing factors constrains its broader application. This study delves into the impacts of EA content, the CaO-MgO ratio, and fiber reinforcement on flexural strength (FS), compressive strength (CS), and EAS, revealing a complex interplay where EA and CaO content detrimentally affect mechanical properties yet beneficially influence EAS. Results showed that EA and CaO content had negative effects on the mechanical properties, but had positive effect on EAS. Additionally, Random Forest (RF) was developed with hyperparameters refined via the firefly algorithm (FA) based on the experimental data. The validity of the built RF-FA models was verified by substantial correlation coefficients and low root-mean-square errors. Subsequently, a coFA-based firefly algorithm (MOFA) was proposed to optimise tri-objectives of mechanical properties, EAS, and cost simultaneously. The Pareto fronts were obtained effectively for the optimal mixture design. This study contributes to its practical implications, offering a scientifically grounded approach to enhancing TSWS concrete design for improved performance and durability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
热乎乎的小空气完成签到,获得积分10
2秒前
机智的砖家完成签到,获得积分10
2秒前
wenwenwang完成签到 ,获得积分10
3秒前
3秒前
zjky6r发布了新的文献求助10
4秒前
老阳发布了新的文献求助10
4秒前
4秒前
过于傻逼完成签到,获得积分10
5秒前
依旧发布了新的文献求助10
5秒前
6秒前
顺利的冬瓜完成签到,获得积分10
6秒前
热心一一发布了新的文献求助10
6秒前
6秒前
hyominhsu发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI5应助勤奋的天蓝采纳,获得10
8秒前
liao完成签到 ,获得积分10
9秒前
9秒前
CKX完成签到,获得积分10
10秒前
11秒前
冷傲山彤发布了新的文献求助10
11秒前
傲娇梦旋发布了新的文献求助10
11秒前
12秒前
严美娜完成签到,获得积分10
12秒前
13秒前
zjky6r完成签到,获得积分20
14秒前
14秒前
Murphy_H给Murphy_H的求助进行了留言
15秒前
求知小莹发布了新的文献求助10
16秒前
wanci应助烂漫念文采纳,获得10
16秒前
susu完成签到,获得积分10
17秒前
17秒前
17秒前
Lz555完成签到 ,获得积分10
18秒前
FashionBoy应助傲娇梦旋采纳,获得10
20秒前
细心的柏柳应助CY采纳,获得10
20秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882