A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction

自回归积分移动平均 建筑 航空 可靠性工程 计算机科学 变压器 工程类 航空安全 时间序列 机器学习 航空航天工程 地理 电气工程 电压 考古
作者
Hang Zeng,Hongmei Zhang,Jiansheng Guo,Bo Ren,Lijie Cui,Jiangnan Wu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:246: 110089-110089 被引量:12
标识
DOI:10.1016/j.ress.2024.110089
摘要

Accurate prediction of aviation failure events helps to anticipate future safety situations and protect against further uncontrollable accidents. However, the large sample size, complex temporal characteristics, and significant long-term correlation of aviation failure events increase the operational cost of accurate prediction. To address these challenges, this paper proposes a novel approach involving seasonal-trend decomposition using Loess (STL) and a hybrid prediction model consisting of a transformer and autoregressive integrated moving average (ARIMA). First, STL decomposition is utilized to isolate trend, seasonal, and remainder components, contributing to a comprehensive understanding of the events sample characteristics. The trend component is then trained and predicted using transformer, solving the vanishing gradient problem and improving computational efficiency. ARIMA is employed to train and predict the seasonal and remainder components, maintaining accuracy while reducing complexity. Finally, a comparative evaluation between the proposed and multiple existing approaches is conducted using Aviation Safety Reporting System (ASRS) data. The results demonstrate that the STL-transformer-ARIMA provides more accurate predictions of failure events than single model. It also exhibits significant advantages in robustness and generalization capacity compared to single transformer-based predictors. This revealed that the proposed approach performed better in predicting aviation failure events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心绮兰发布了新的文献求助30
刚刚
GSQ发布了新的文献求助10
刚刚
1秒前
1秒前
Kaka发布了新的文献求助10
1秒前
Coco完成签到,获得积分10
1秒前
王彦秀完成签到,获得积分10
2秒前
油饼发布了新的文献求助10
2秒前
大模型应助邓宇杭采纳,获得10
2秒前
华仔应助Ww采纳,获得10
2秒前
2秒前
Marvel关注了科研通微信公众号
3秒前
Damtree发布了新的文献求助10
3秒前
顾矜应助清樾采纳,获得10
3秒前
西林给西林的求助进行了留言
3秒前
3秒前
wuzheng完成签到,获得积分10
4秒前
4秒前
5秒前
popo发布了新的文献求助10
5秒前
5秒前
泡泡发布了新的文献求助10
5秒前
6秒前
王哪跑12发布了新的文献求助10
6秒前
young完成签到,获得积分10
6秒前
单丽伟发布了新的文献求助10
6秒前
坦率的匪应助GSQ采纳,获得20
6秒前
小文子发布了新的文献求助10
6秒前
唐古拉完成签到,获得积分10
7秒前
王姝涵发布了新的文献求助10
8秒前
8秒前
8秒前
盛龙完成签到,获得积分10
9秒前
c c发布了新的文献求助10
9秒前
9秒前
活力煎蛋完成签到,获得积分10
9秒前
10秒前
11秒前
在水一方应助大方的凌波采纳,获得10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559