A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction

自回归积分移动平均 建筑 航空 可靠性工程 计算机科学 变压器 工程类 航空安全 时间序列 机器学习 航空航天工程 地理 电气工程 考古 电压
作者
Hang Zeng,Hongmei Zhang,Jiansheng Guo,Bo Ren,Lijie Cui,Jiangnan Wu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:246: 110089-110089 被引量:12
标识
DOI:10.1016/j.ress.2024.110089
摘要

Accurate prediction of aviation failure events helps to anticipate future safety situations and protect against further uncontrollable accidents. However, the large sample size, complex temporal characteristics, and significant long-term correlation of aviation failure events increase the operational cost of accurate prediction. To address these challenges, this paper proposes a novel approach involving seasonal-trend decomposition using Loess (STL) and a hybrid prediction model consisting of a transformer and autoregressive integrated moving average (ARIMA). First, STL decomposition is utilized to isolate trend, seasonal, and remainder components, contributing to a comprehensive understanding of the events sample characteristics. The trend component is then trained and predicted using transformer, solving the vanishing gradient problem and improving computational efficiency. ARIMA is employed to train and predict the seasonal and remainder components, maintaining accuracy while reducing complexity. Finally, a comparative evaluation between the proposed and multiple existing approaches is conducted using Aviation Safety Reporting System (ASRS) data. The results demonstrate that the STL-transformer-ARIMA provides more accurate predictions of failure events than single model. It also exhibits significant advantages in robustness and generalization capacity compared to single transformer-based predictors. This revealed that the proposed approach performed better in predicting aviation failure events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王者归来完成签到,获得积分10
刚刚
冰之发布了新的文献求助10
刚刚
万能图书馆应助说好不哭采纳,获得10
1秒前
liubing发布了新的文献求助10
3秒前
yanna应助YAO采纳,获得10
3秒前
4秒前
4秒前
JOKER发布了新的文献求助10
5秒前
charlie67373发布了新的文献求助10
5秒前
6秒前
6秒前
卡卡西应助野良采纳,获得10
6秒前
6秒前
不要辣椒发布了新的文献求助10
6秒前
Pluto完成签到,获得积分10
6秒前
6秒前
CodeCraft应助wddsf采纳,获得10
7秒前
7秒前
9秒前
10秒前
liubing完成签到,获得积分10
10秒前
小何完成签到,获得积分10
10秒前
smalldesk发布了新的文献求助10
10秒前
科研通AI2S应助火星上念梦采纳,获得10
11秒前
Hello应助科研小菜鸟i采纳,获得10
11秒前
cbf完成签到 ,获得积分10
11秒前
淡定的勒发布了新的文献求助10
12秒前
wanci应助lulu采纳,获得10
13秒前
辉哥发布了新的文献求助10
13秒前
13秒前
snutcc发布了新的文献求助10
13秒前
DD完成签到,获得积分20
14秒前
甜美雁卉发布了新的文献求助10
15秒前
深情安青应助莫三颜采纳,获得10
15秒前
15秒前
柯一一应助爱听歌的火火采纳,获得10
17秒前
18秒前
18秒前
18秒前
charlie67373完成签到,获得积分10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980258
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220452
捐赠科研通 3261658
什么是DOI,文献DOI怎么找? 1800882
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807234