重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A novel hybrid STL-transformer-ARIMA architecture for aviation failure events prediction

自回归积分移动平均 建筑 航空 可靠性工程 计算机科学 变压器 工程类 航空安全 时间序列 机器学习 航空航天工程 地理 电气工程 电压 考古
作者
Hang Zeng,Hongmei Zhang,Jiansheng Guo,Bo Ren,Lijie Cui,Jiangnan Wu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:246: 110089-110089 被引量:14
标识
DOI:10.1016/j.ress.2024.110089
摘要

Accurate prediction of aviation failure events helps to anticipate future safety situations and protect against further uncontrollable accidents. However, the large sample size, complex temporal characteristics, and significant long-term correlation of aviation failure events increase the operational cost of accurate prediction. To address these challenges, this paper proposes a novel approach involving seasonal-trend decomposition using Loess (STL) and a hybrid prediction model consisting of a transformer and autoregressive integrated moving average (ARIMA). First, STL decomposition is utilized to isolate trend, seasonal, and remainder components, contributing to a comprehensive understanding of the events sample characteristics. The trend component is then trained and predicted using transformer, solving the vanishing gradient problem and improving computational efficiency. ARIMA is employed to train and predict the seasonal and remainder components, maintaining accuracy while reducing complexity. Finally, a comparative evaluation between the proposed and multiple existing approaches is conducted using Aviation Safety Reporting System (ASRS) data. The results demonstrate that the STL-transformer-ARIMA provides more accurate predictions of failure events than single model. It also exhibits significant advantages in robustness and generalization capacity compared to single transformer-based predictors. This revealed that the proposed approach performed better in predicting aviation failure events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
aaaasss完成签到,获得积分10
刚刚
1秒前
dbaxia完成签到,获得积分10
1秒前
1秒前
科研通AI6应助KongHN采纳,获得10
1秒前
1秒前
guo发布了新的文献求助10
1秒前
yinhao发布了新的文献求助10
2秒前
三腔二囊管发布了新的文献求助100
2秒前
2秒前
光亮烤鸡发布了新的文献求助10
2秒前
tang完成签到,获得积分10
3秒前
3秒前
3秒前
王王王完成签到,获得积分10
3秒前
Neltharion完成签到,获得积分0
3秒前
Lekai发布了新的文献求助10
3秒前
深情安青应助111采纳,获得10
3秒前
zero完成签到,获得积分10
4秒前
4秒前
4秒前
韭黄发布了新的文献求助10
4秒前
4秒前
just发布了新的文献求助10
5秒前
Owen应助橘子采纳,获得10
5秒前
悲凉的惮发布了新的文献求助10
5秒前
所所应助skycrygg521采纳,获得10
5秒前
拼搏雨兰发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
HQQ完成签到,获得积分20
6秒前
6秒前
qingmoheng应助黑粉头头采纳,获得10
7秒前
7秒前
7秒前
深情安青应助王曼曼采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612