Accurate and Efficient Multi-robot Collaborative Stereo SLAM for Mars Exploration

火星探测计划 机器人 同时定位和映射 计算机科学 人工智能 火星探测 计算机视觉 稳健性(进化) 移动机器人 实时计算 天体生物学 生物化学 基因 物理 化学
作者
Yuanbin Shao,Yadong Shao,Xue Wan
标识
DOI:10.1109/icosr57188.2022.00031
摘要

In recent years, planetary exploration has received a lot of attention in the aerospace field, and Mars is favored because of its cosmic environment that is very similar to the Earth. So far, human have sent six rovers and a helicopter to Mars. However, the GNSS global navigation system is unavailable on Mars, and there is a communication delay of 7 to 45 minutes between the Earth and Mars, which poses a huge challenge to the autonomous navigation and obstacle avoidance of the Mars robot. At the same time, the current exploration is carried out by a single robot, so the exploration range is limited. Multi-robot collaboration can improve the efficiency and robustness of planetary task execution. Multi-robot collaborative Simultaneous Localization and Mapping (SLAM) is conducive to enhancing the localization and mapping capabilities of robots. To achieve the goal, we propose an accurate and efficient Multi-robot collaborative stereo SLAM(MCS-SLAM). While ensuring that each robot works independently, MCS-SLAM collects the robot's localization and mapping results to the server through wireless communication, and completes the fusion optimization of multi-robot's localization and mapping data on the server. We generated six sets of image data, which were respectively captured by the stereo cameras carried by the simulated three rovers and three UAVs. Considering the limited CPU performance of Mars robot's computing device, we conducted experiments on Nvidia's edge computing equipment. The experimental results show that MCS-SLAM achieves real-time localization effects of 6fps and 10fps on Jeston TX2 and Jeston Xavier. Overall, when only stereo cameras are configured for collaborative work, the localization accuracy of the rover team and the UAV team reached 1.97m and 0.89m, respectively, and the average localization accuracy of 100 meters was 0.36m and 0.17m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Baneyhua完成签到,获得积分10
刚刚
刚刚
脑洞疼应助crazy采纳,获得10
1秒前
研友_Zrlk7L完成签到,获得积分10
1秒前
华仔应助KLM采纳,获得10
2秒前
23完成签到,获得积分10
2秒前
3秒前
张楚岚发布了新的文献求助20
4秒前
5秒前
肉卷发布了新的文献求助10
5秒前
6秒前
科研小牛马完成签到,获得积分10
6秒前
7秒前
高挑的小蕊完成签到,获得积分10
7秒前
小蘑菇应助GL采纳,获得10
8秒前
GT发布了新的文献求助10
9秒前
10秒前
jdjd发布了新的文献求助10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
柏林寒冬应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
核桃应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
新青年应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425