Accurate and Efficient Multi-robot Collaborative Stereo SLAM for Mars Exploration

火星探测计划 机器人 同时定位和映射 计算机科学 人工智能 火星探测 计算机视觉 稳健性(进化) 移动机器人 实时计算 天体生物学 生物化学 化学 物理 基因
作者
Yuanbin Shao,Yadong Shao,Xue Wan
标识
DOI:10.1109/icosr57188.2022.00031
摘要

In recent years, planetary exploration has received a lot of attention in the aerospace field, and Mars is favored because of its cosmic environment that is very similar to the Earth. So far, human have sent six rovers and a helicopter to Mars. However, the GNSS global navigation system is unavailable on Mars, and there is a communication delay of 7 to 45 minutes between the Earth and Mars, which poses a huge challenge to the autonomous navigation and obstacle avoidance of the Mars robot. At the same time, the current exploration is carried out by a single robot, so the exploration range is limited. Multi-robot collaboration can improve the efficiency and robustness of planetary task execution. Multi-robot collaborative Simultaneous Localization and Mapping (SLAM) is conducive to enhancing the localization and mapping capabilities of robots. To achieve the goal, we propose an accurate and efficient Multi-robot collaborative stereo SLAM(MCS-SLAM). While ensuring that each robot works independently, MCS-SLAM collects the robot's localization and mapping results to the server through wireless communication, and completes the fusion optimization of multi-robot's localization and mapping data on the server. We generated six sets of image data, which were respectively captured by the stereo cameras carried by the simulated three rovers and three UAVs. Considering the limited CPU performance of Mars robot's computing device, we conducted experiments on Nvidia's edge computing equipment. The experimental results show that MCS-SLAM achieves real-time localization effects of 6fps and 10fps on Jeston TX2 and Jeston Xavier. Overall, when only stereo cameras are configured for collaborative work, the localization accuracy of the rover team and the UAV team reached 1.97m and 0.89m, respectively, and the average localization accuracy of 100 meters was 0.36m and 0.17m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助里昂。采纳,获得10
1秒前
1秒前
1秒前
大模型应助犹豫的故事采纳,获得10
1秒前
2秒前
NexusExplorer应助zzz采纳,获得10
2秒前
2秒前
欢呼沅发布了新的文献求助10
2秒前
Nanami_ii发布了新的文献求助10
2秒前
3秒前
4秒前
是猪毛啊完成签到,获得积分10
4秒前
美丽梦秋发布了新的文献求助10
5秒前
女巫Q完成签到,获得积分20
5秒前
动听平露发布了新的文献求助10
6秒前
打打应助chaoqi采纳,获得10
6秒前
朱荧荧发布了新的文献求助10
6秒前
8秒前
香蕉觅云应助包子采纳,获得30
9秒前
共享精神应助zzzzzz采纳,获得10
9秒前
初学者发布了新的文献求助10
9秒前
小猴发布了新的文献求助10
9秒前
9秒前
10秒前
科研通AI2S应助长情的书雁采纳,获得10
10秒前
wanci应助这个郭我背了采纳,获得30
10秒前
10秒前
难过大神完成签到,获得积分10
10秒前
lqh0211完成签到,获得积分10
11秒前
King完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
搜集达人应助君无名采纳,获得10
12秒前
忧伤的八宝粥完成签到,获得积分10
13秒前
13秒前
zzz完成签到,获得积分20
13秒前
13秒前
13秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869