A Novel Grey Seasonal Model for Natural Gas Production Forecasting

粒子群优化 生产(经济) 计算机科学 时间序列 环境科学 计量经济学 统计 气象学 数学 算法 地理 经济 宏观经济学
作者
Yuzhen Chen,Hui Wang,Suzhen Li,Rui Dong
出处
期刊:Fractal and fractional [Multidisciplinary Digital Publishing Institute]
卷期号:7 (6): 422-422 被引量:3
标识
DOI:10.3390/fractalfract7060422
摘要

To accurately predict the time series of energy data, an optimized Hausdorff fractional grey seasonal model was proposed based on the complex characteristics of seasonal fluctuations and local random oscillations of seasonal energy data. This paper used a new seasonal index to eliminate the seasonal variation of the data and weaken the local random fluctuations. Furthermore, the Hausdorff fractional accumulation operator was introduced into the traditional grey prediction model to improve the weight of new information, and the particle swarm optimization algorithm was used to find the nonlinear parameters of the model. In order to verify the reliability of the new model in energy forecasting, the new model was applied to two different energy types, hydropower and wind power. The experimental results indicated that the model can effectively predict quarterly time series of energy data. Based on this, we used China’s quarterly natural gas production data from 2015 to 2021 as samples to forecast those for 2022–2024. In addition, we also compared the proposed model with the traditional statistical models and the grey seasonal models. The comparison results showed that the new model had obvious advantages in predicting quarterly data of natural gas production, and the accurate prediction results can provide a reference for natural gas resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spp发布了新的文献求助10
2秒前
3秒前
amywang1931完成签到,获得积分10
4秒前
4秒前
6秒前
小狗不是抠脚兵完成签到,获得积分10
6秒前
归途完成签到 ,获得积分10
7秒前
mmr发布了新的文献求助60
7秒前
Orange应助乱武采纳,获得30
7秒前
浔xxx发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
13秒前
14秒前
15秒前
16秒前
已知中的未知完成签到 ,获得积分10
18秒前
19秒前
斯文觅珍发布了新的文献求助10
19秒前
space完成签到,获得积分10
20秒前
张雷应助科研通管家采纳,获得20
20秒前
科目三应助科研通管家采纳,获得10
20秒前
ED应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
1111应助科研通管家采纳,获得10
21秒前
YamDaamCaa应助科研通管家采纳,获得30
21秒前
21秒前
21秒前
21秒前
21秒前
小小叶完成签到,获得积分10
22秒前
22秒前
情怀应助火星上鑫鹏采纳,获得10
22秒前
ZAPAR发布了新的文献求助10
23秒前
闪闪静槐关注了科研通微信公众号
24秒前
似水年华完成签到 ,获得积分10
26秒前
安芝完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662