Development and validation of a prediction model to predict major adverse cardiovascular events in elderly patients undergoing noncardiac surgery: A retrospective cohort study

医学 列线图 接收机工作特性 逻辑回归 阿达布思 决策树 心肌梗塞 校准 机器学习 曲线下面积 预测建模 冲程(发动机) 随机森林 内科学 统计 急诊医学 人工智能 支持向量机 计算机科学 数学 工程类 机械工程
作者
Kai Zhang,Chang Liu,Xiaoling Sha,Siyi Yao,Zhao Li,Yu Yao,Jingsheng Lou,Qiang Fu,Yanhong Liu,Jiangbei Cao,Jiaqiang Zhang,Yi Yang,Weidong Mi,Hao Li
出处
期刊:Atherosclerosis [Elsevier BV]
卷期号:376: 71-79 被引量:8
标识
DOI:10.1016/j.atherosclerosis.2023.06.008
摘要

Current existing predictive tools have limitations in predicting major adverse cardiovascular events (MACEs) in elderly patients. We will build a new prediction model to predict MACEs in elderly patients undergoing noncardiac surgery by using traditional statistical methods and machine learning algorithms.MACEs were defined as acute myocardial infarction (AMI), ischemic stroke, heart failure and death within 30 days after surgery. Clinical data from 45,102 elderly patients (≥65 years old), who underwent noncardiac surgery from two independent cohorts, were used to develop and validate the prediction models. A traditional logistic regression and five machine learning models (decision tree, random forest, LGBM, AdaBoost, and XGBoost) were compared by the area under the receiver operating characteristic curve (AUC). In the traditional prediction model, the calibration was assessed using the calibration curve and the patients' net benefit was measured by decision curve analysis (DCA).Among 45,102 elderly patients, 346 (0.76%) developed MACEs. The AUC of this traditional model was 0.800 (95% CI, 0.708-0.831) in the internal validation set, and 0.768 (95% CI, 0.702-0.835) in the external validation set. In the best machine learning prediction model-AdaBoost model, the AUC in the internal and external validation set was 0.778 and 0.732, respectively. Besides, for the traditional prediction model, the calibration curve of model performance accurately predicted the risk of MACEs (Hosmer and Lemeshow, p = 0.573), the DCA results showed that the nomogram had a high net benefit for predicting postoperative MACEs.This prediction model based on the traditional method could accurately predict the risk of MACEs after noncardiac surgery in elderly patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助lsy采纳,获得10
2秒前
邓杰元关注了科研通微信公众号
4秒前
5秒前
6秒前
7秒前
SYLH应助文章发的多多的采纳,获得10
9秒前
汉堡包应助老阳采纳,获得10
11秒前
12秒前
飞飞鱼发布了新的文献求助10
12秒前
拼搏的飞薇完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
18秒前
20秒前
悦耳黑猫发布了新的文献求助10
22秒前
Tingting完成签到 ,获得积分10
22秒前
23秒前
老阳发布了新的文献求助10
23秒前
24秒前
深情安青应助l98916采纳,获得10
24秒前
25秒前
zimo完成签到,获得积分10
26秒前
26秒前
清新的苑博完成签到,获得积分10
26秒前
lsy发布了新的文献求助10
28秒前
魏晓林完成签到,获得积分10
28秒前
bee发布了新的文献求助10
30秒前
ztt发布了新的文献求助10
31秒前
32秒前
文章发的多多的完成签到,获得积分20
32秒前
打打应助whl采纳,获得10
33秒前
fineglue完成签到,获得积分10
33秒前
35秒前
清新完成签到,获得积分10
36秒前
邓杰元发布了新的文献求助50
36秒前
无辜洋葱发布了新的文献求助10
36秒前
传奇3应助舒服的秋荷采纳,获得10
36秒前
Akim应助天天娃哈哈采纳,获得10
36秒前
顾矜应助悦耳黑猫采纳,获得10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975