Development and validation of a prediction model to predict major adverse cardiovascular events in elderly patients undergoing noncardiac surgery: A retrospective cohort study

医学 列线图 接收机工作特性 逻辑回归 阿达布思 决策树 心肌梗塞 校准 机器学习 曲线下面积 预测建模 冲程(发动机) 随机森林 内科学 统计 急诊医学 人工智能 支持向量机 计算机科学 数学 工程类 机械工程
作者
Kai Zhang,Chang Liu,Xiaoling Sha,Siyi Yao,Zhao Li,Yu Yao,Jingsheng Lou,Qiang Fu,Yanhong Liu,Jiangbei Cao,Jiaqiang Zhang,Yi Yang,Weidong Mi,Hao Li
出处
期刊:Atherosclerosis [Elsevier BV]
卷期号:376: 71-79 被引量:10
标识
DOI:10.1016/j.atherosclerosis.2023.06.008
摘要

Current existing predictive tools have limitations in predicting major adverse cardiovascular events (MACEs) in elderly patients. We will build a new prediction model to predict MACEs in elderly patients undergoing noncardiac surgery by using traditional statistical methods and machine learning algorithms.MACEs were defined as acute myocardial infarction (AMI), ischemic stroke, heart failure and death within 30 days after surgery. Clinical data from 45,102 elderly patients (≥65 years old), who underwent noncardiac surgery from two independent cohorts, were used to develop and validate the prediction models. A traditional logistic regression and five machine learning models (decision tree, random forest, LGBM, AdaBoost, and XGBoost) were compared by the area under the receiver operating characteristic curve (AUC). In the traditional prediction model, the calibration was assessed using the calibration curve and the patients' net benefit was measured by decision curve analysis (DCA).Among 45,102 elderly patients, 346 (0.76%) developed MACEs. The AUC of this traditional model was 0.800 (95% CI, 0.708-0.831) in the internal validation set, and 0.768 (95% CI, 0.702-0.835) in the external validation set. In the best machine learning prediction model-AdaBoost model, the AUC in the internal and external validation set was 0.778 and 0.732, respectively. Besides, for the traditional prediction model, the calibration curve of model performance accurately predicted the risk of MACEs (Hosmer and Lemeshow, p = 0.573), the DCA results showed that the nomogram had a high net benefit for predicting postoperative MACEs.This prediction model based on the traditional method could accurately predict the risk of MACEs after noncardiac surgery in elderly patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫初柒完成签到 ,获得积分10
刚刚
冷靖完成签到,获得积分10
1秒前
liu完成签到,获得积分10
1秒前
2秒前
xionghaizi完成签到,获得积分10
3秒前
yahonyoyoyo发布了新的文献求助10
3秒前
冷靖发布了新的文献求助10
4秒前
新威宝贝完成签到,获得积分10
8秒前
利物鸟贝拉完成签到,获得积分10
9秒前
明天见完成签到,获得积分20
11秒前
13秒前
康谨完成签到 ,获得积分10
16秒前
华仔应助明天见采纳,获得10
16秒前
chen应助淡然菲音采纳,获得10
16秒前
疯狂的翠梅完成签到,获得积分10
17秒前
mochi完成签到,获得积分10
17秒前
18秒前
19秒前
打打应助李李李采纳,获得10
20秒前
温冰雪应助大秋哥哈拉少采纳,获得10
20秒前
打打应助吕轩达采纳,获得10
20秒前
潇潇完成签到 ,获得积分10
23秒前
领导范儿应助PCEEN采纳,获得10
23秒前
爆米花应助畅快代灵采纳,获得10
23秒前
28秒前
29秒前
30秒前
酷波er应助AiX-zzzzz采纳,获得10
31秒前
Jason-1024完成签到,获得积分10
32秒前
LZW关闭了LZW文献求助
32秒前
34秒前
llllhh完成签到,获得积分10
34秒前
Hannah601完成签到,获得积分10
36秒前
7Hours完成签到,获得积分20
37秒前
37秒前
核桃应助淡然菲音采纳,获得10
38秒前
Lh完成签到,获得积分10
38秒前
Glorious完成签到,获得积分10
38秒前
38秒前
畅快代灵完成签到,获得积分20
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003