MS3Net: Multiscale stratified-split symmetric network with quadra-view attention for hyperspectral image classification

计算机科学 人工智能 模式识别(心理学) 核(代数) 高光谱成像 光学(聚焦) 特征提取 特征(语言学) 卷积(计算机科学) 卷积神经网络 水准点(测量) 维数(图论) 人工神经网络 数学 地理 语言学 哲学 物理 大地测量学 组合数学 纯数学 光学
作者
Moqi Liu,Hongyu Pan,Haimiao Ge,Liguo Wang
出处
期刊:Signal Processing [Elsevier BV]
卷期号:212: 109153-109153 被引量:5
标识
DOI:10.1016/j.sigpro.2023.109153
摘要

Recently, hyperspectral image (HSI) classification has become a promising research direction in remote sensing image processing. Many HSI classification methods have been proposed based on convolutional neural networks (CNNs) and attention mechanisms (AMs). However, most current CNN-based methods only consider extracting features at a single scale in HSI, which may ignore the delicate features of some objects. Moreover, present AMs primarily focus on one feature dimension, such as spatial or channel attention, while disregarding dimension interaction. To conquer the above issues, a novel multiscale stratified-split symmetric network with quadra-view attention, namely MS3Net, is proposed for HSI classification. Generally, the proposed MS3Net has a dual-stream symmetric pipeline, which can better extract HSI's spectral signatures and spatial features. Specifically, the proposed MS3Net consists of three modules: a multiscale feature extraction module, a feature enhancement module, and a feature fusion module. Firstly, a stratified-split module is designed to extract multiscale spectral and spatial features. In addition, to reduce the complexity of the model, we designed pseudo-3-D spectral and spatial convolution to replace the traditional 3-D convolution operation. Secondly, a novel quadra-view attention module is proposed, guiding the model to focus on important features from multiple dimensions. Finally, the selective kernel feature fusion module is introduced, which can dynamically integrate spectral and spatial features. Experimental results on four benchmark HSI datasets with different scenes and resolutions confirm the visual and quantitative superiority of the proposed MS3Net over the state-of-the-art related methods in this research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助老实乌冬面采纳,获得10
刚刚
SciGPT应助杨琳采纳,获得10
1秒前
yznfly应助csr采纳,获得20
1秒前
Kvolu29发布了新的文献求助10
1秒前
顾萧应助知非采纳,获得10
1秒前
1秒前
上官若男应助哈哈呀采纳,获得10
1秒前
鱼笙完成签到,获得积分10
2秒前
樱桃小胖子完成签到,获得积分10
2秒前
3秒前
陈圈圈发布了新的文献求助10
3秒前
艾哥完成签到,获得积分10
4秒前
perway发布了新的文献求助10
4秒前
4秒前
lvjiahui发布了新的文献求助20
4秒前
简单发布了新的文献求助10
5秒前
5秒前
xx发布了新的文献求助10
5秒前
5秒前
5秒前
09233完成签到,获得积分20
6秒前
6秒前
精明的尔丝完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
打打应助Microgan采纳,获得10
9秒前
9秒前
呵呵发布了新的文献求助10
9秒前
qiqi发布了新的文献求助10
9秒前
ZAJsci发布了新的文献求助10
10秒前
米糊发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
快乐映萱完成签到,获得积分10
12秒前
赘婿应助li采纳,获得10
12秒前
搜集达人应助perway采纳,获得10
12秒前
CY完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180