Intracranial Entrainment Reveals Statistical Learning across Levels of Abstraction

夹带(生物音乐学) 心理学 统计学习 抽象 认知心理学 概念学习 感知 大脑活动与冥想 沟通 人工智能 脑电图 神经科学 计算机科学 节奏 美学 认识论 哲学
作者
Brynn E Sherman,Ayman Aljishi,Kathryn N. Graves,Imran H. Quraishi,Adithya Sivaraju,Eyiyemisi C. Damisah,Nicholas B. Turk-Browne
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:: 1-17
标识
DOI:10.1162/jocn_a_02012
摘要

Abstract We encounter the same people, places, and objects in predictable sequences and configurations. Humans efficiently learn these regularities via statistical learning. Importantly, statistical learning creates knowledge not only of specific regularities but also of regularities that apply more generally across related experiences (i.e., across members of a category). Prior evidence for different levels of learning comes from post-exposure behavioral tests, leaving open the question of whether more abstract regularities are detected online during initial exposure. We address this question by measuring neural entrainment in intracranial recordings. Neurosurgical patients viewed a stream of photographs with regularities at 1 of 2 levels: In the exemplar-level structured condition, the same photographs appeared repeatedly in pairs. In the category-level structured condition, the photographs were trial-unique but their categories were paired across repetitions. In a baseline random condition, the same photographs repeated but in a scrambled order. We measured entrainment at the frequency of individual photographs, which was expected in all conditions, but critically also at half that frequency—the rate at which to-be-learned pairs appeared in the 2 structured (but not random) conditions. Entrainment to both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and temporal regions. Many electrode contacts were sensitive to only one level of structure, but a significant number encoded both levels. These findings suggest that the brain spontaneously uncovers category-level regularities during statistical learning, providing insight into the brain's unsupervised mechanisms for building flexible and robust knowledge that generalizes across input variation and conceptual hierarchies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianqi发布了新的文献求助10
刚刚
moon完成签到,获得积分10
2秒前
棉花糖发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
顾己发布了新的文献求助10
3秒前
大模型应助柔弱嵩采纳,获得10
3秒前
4秒前
不安丹烟完成签到,获得积分10
4秒前
5秒前
ACE发布了新的文献求助10
5秒前
fuiee完成签到,获得积分10
6秒前
小新完成签到,获得积分10
6秒前
科研通AI5应助jiaming采纳,获得10
6秒前
Hello应助嘀嘀嘀采纳,获得10
6秒前
7秒前
王哇噻完成签到 ,获得积分10
7秒前
9秒前
liulk发布了新的文献求助10
9秒前
筑楼听雨完成签到,获得积分10
9秒前
gm完成签到,获得积分10
9秒前
Eva发布了新的文献求助10
10秒前
我是老大应助wjx采纳,获得10
10秒前
Lucas应助Luhh采纳,获得10
10秒前
flow发布了新的文献求助10
10秒前
夕夜完成签到,获得积分10
11秒前
斯文败类应助激动的乐安采纳,获得10
12秒前
12秒前
小团子完成签到 ,获得积分10
13秒前
13秒前
15秒前
yuiyui09完成签到,获得积分20
15秒前
15秒前
kangnakangna完成签到,获得积分10
15秒前
LvXiaodie完成签到,获得积分10
16秒前
Jasper应助万事胜意采纳,获得10
16秒前
我是废物发布了新的文献求助10
16秒前
16秒前
健忘半邪完成签到 ,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082371
求助须知:如何正确求助?哪些是违规求助? 4299730
关于积分的说明 13396998
捐赠科研通 4123608
什么是DOI,文献DOI怎么找? 2258463
邀请新用户注册赠送积分活动 1262720
关于科研通互助平台的介绍 1196681