Intracranial Entrainment Reveals Statistical Learning across Levels of Abstraction

夹带(生物音乐学) 心理学 统计学习 抽象 认知心理学 概念学习 感知 大脑活动与冥想 沟通 人工智能 脑电图 神经科学 计算机科学 节奏 美学 认识论 哲学
作者
Brynn E Sherman,Ayman Aljishi,Kathryn N. Graves,Imran H. Quraishi,Adithya Sivaraju,Eyiyemisi C. Damisah,Nicholas B. Turk-Browne
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:: 1-17
标识
DOI:10.1162/jocn_a_02012
摘要

Abstract We encounter the same people, places, and objects in predictable sequences and configurations. Humans efficiently learn these regularities via statistical learning. Importantly, statistical learning creates knowledge not only of specific regularities but also of regularities that apply more generally across related experiences (i.e., across members of a category). Prior evidence for different levels of learning comes from post-exposure behavioral tests, leaving open the question of whether more abstract regularities are detected online during initial exposure. We address this question by measuring neural entrainment in intracranial recordings. Neurosurgical patients viewed a stream of photographs with regularities at 1 of 2 levels: In the exemplar-level structured condition, the same photographs appeared repeatedly in pairs. In the category-level structured condition, the photographs were trial-unique but their categories were paired across repetitions. In a baseline random condition, the same photographs repeated but in a scrambled order. We measured entrainment at the frequency of individual photographs, which was expected in all conditions, but critically also at half that frequency—the rate at which to-be-learned pairs appeared in the 2 structured (but not random) conditions. Entrainment to both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and temporal regions. Many electrode contacts were sensitive to only one level of structure, but a significant number encoded both levels. These findings suggest that the brain spontaneously uncovers category-level regularities during statistical learning, providing insight into the brain's unsupervised mechanisms for building flexible and robust knowledge that generalizes across input variation and conceptual hierarchies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿绿发布了新的文献求助10
3秒前
4秒前
4秒前
雨柏完成签到 ,获得积分10
4秒前
wanci应助qwe1108采纳,获得10
5秒前
明天过后完成签到,获得积分10
7秒前
jin完成签到,获得积分10
8秒前
yhy完成签到 ,获得积分10
9秒前
黑色卡布奇诺完成签到,获得积分20
9秒前
tanglu发布了新的文献求助10
9秒前
可爱的函函应助梁大海采纳,获得10
9秒前
成就绮琴完成签到 ,获得积分10
10秒前
xicifish完成签到,获得积分10
10秒前
目光之澄完成签到,获得积分10
11秒前
wanci应助研友_ndDPBn采纳,获得10
11秒前
耍酷的白梦完成签到,获得积分10
12秒前
miracle完成签到 ,获得积分10
13秒前
coding完成签到,获得积分10
14秒前
15秒前
犹豫水蓝完成签到,获得积分10
16秒前
yin完成签到,获得积分10
16秒前
JUGG完成签到,获得积分10
16秒前
CipherSage应助阿湫采纳,获得10
17秒前
FIN应助手机采纳,获得20
17秒前
星辰大海应助东黎采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
wujingshuai完成签到,获得积分10
18秒前
少年完成签到,获得积分10
18秒前
星辰大海应助ficus_min采纳,获得10
19秒前
小柒柒完成签到,获得积分10
20秒前
sdfwsdfsd完成签到,获得积分10
21秒前
亮仔完成签到,获得积分10
22秒前
土豆丝发布了新的文献求助10
22秒前
ylw完成签到,获得积分20
23秒前
西门明雪完成签到,获得积分10
23秒前
23秒前
烟花应助万松辉采纳,获得10
24秒前
爆米花应助不站在雾里采纳,获得10
24秒前
yy完成签到,获得积分20
25秒前
高贵宛海完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048