Intracranial Entrainment Reveals Statistical Learning across Levels of Abstraction

夹带(生物音乐学) 心理学 统计学习 抽象 认知心理学 概念学习 感知 大脑活动与冥想 沟通 人工智能 脑电图 神经科学 计算机科学 节奏 美学 认识论 哲学
作者
Brynn E Sherman,Ayman Aljishi,Kathryn N. Graves,Imran H. Quraishi,Adithya Sivaraju,Eyiyemisi C. Damisah,Nicholas B. Turk-Browne
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:: 1-17
标识
DOI:10.1162/jocn_a_02012
摘要

Abstract We encounter the same people, places, and objects in predictable sequences and configurations. Humans efficiently learn these regularities via statistical learning. Importantly, statistical learning creates knowledge not only of specific regularities but also of regularities that apply more generally across related experiences (i.e., across members of a category). Prior evidence for different levels of learning comes from post-exposure behavioral tests, leaving open the question of whether more abstract regularities are detected online during initial exposure. We address this question by measuring neural entrainment in intracranial recordings. Neurosurgical patients viewed a stream of photographs with regularities at 1 of 2 levels: In the exemplar-level structured condition, the same photographs appeared repeatedly in pairs. In the category-level structured condition, the photographs were trial-unique but their categories were paired across repetitions. In a baseline random condition, the same photographs repeated but in a scrambled order. We measured entrainment at the frequency of individual photographs, which was expected in all conditions, but critically also at half that frequency—the rate at which to-be-learned pairs appeared in the 2 structured (but not random) conditions. Entrainment to both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and temporal regions. Many electrode contacts were sensitive to only one level of structure, but a significant number encoded both levels. These findings suggest that the brain spontaneously uncovers category-level regularities during statistical learning, providing insight into the brain's unsupervised mechanisms for building flexible and robust knowledge that generalizes across input variation and conceptual hierarchies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小新发布了新的文献求助10
刚刚
成梦发布了新的文献求助10
1秒前
乐乐应助xuex1采纳,获得10
1秒前
蜂鸟5156发布了新的文献求助10
1秒前
李爱国应助VDC采纳,获得10
2秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
ns完成签到,获得积分10
3秒前
细腻晓露发布了新的文献求助10
3秒前
李本来发布了新的文献求助10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得30
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
NN应助科研通管家采纳,获得10
4秒前
科研通AI5应助幽默的宛白采纳,获得30
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
单薄归尘完成签到 ,获得积分10
4秒前
无花果应助科研通管家采纳,获得30
4秒前
4秒前
LY完成签到,获得积分10
5秒前
枫于林完成签到 ,获得积分10
5秒前
5秒前
砰砰砰砰啪!完成签到 ,获得积分10
6秒前
lili完成签到 ,获得积分10
8秒前
xzh完成签到,获得积分10
8秒前
ddsyg126完成签到,获得积分10
9秒前
共享精神应助李小新采纳,获得10
10秒前
小鲤鱼吃大菠萝完成签到,获得积分10
10秒前
xuex1发布了新的文献求助10
10秒前
cc发布了新的文献求助50
12秒前
dd完成签到 ,获得积分10
14秒前
天天完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808