Intracranial Entrainment Reveals Statistical Learning across Levels of Abstraction

夹带(生物音乐学) 心理学 统计学习 抽象 认知心理学 概念学习 感知 大脑活动与冥想 沟通 人工智能 脑电图 神经科学 计算机科学 节奏 美学 认识论 哲学
作者
Brynn E Sherman,Ayman Aljishi,Kathryn N. Graves,Imran H. Quraishi,Adithya Sivaraju,Eyiyemisi C. Damisah,Nicholas B. Turk-Browne
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:: 1-17
标识
DOI:10.1162/jocn_a_02012
摘要

Abstract We encounter the same people, places, and objects in predictable sequences and configurations. Humans efficiently learn these regularities via statistical learning. Importantly, statistical learning creates knowledge not only of specific regularities but also of regularities that apply more generally across related experiences (i.e., across members of a category). Prior evidence for different levels of learning comes from post-exposure behavioral tests, leaving open the question of whether more abstract regularities are detected online during initial exposure. We address this question by measuring neural entrainment in intracranial recordings. Neurosurgical patients viewed a stream of photographs with regularities at 1 of 2 levels: In the exemplar-level structured condition, the same photographs appeared repeatedly in pairs. In the category-level structured condition, the photographs were trial-unique but their categories were paired across repetitions. In a baseline random condition, the same photographs repeated but in a scrambled order. We measured entrainment at the frequency of individual photographs, which was expected in all conditions, but critically also at half that frequency—the rate at which to-be-learned pairs appeared in the 2 structured (but not random) conditions. Entrainment to both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and temporal regions. Many electrode contacts were sensitive to only one level of structure, but a significant number encoded both levels. These findings suggest that the brain spontaneously uncovers category-level regularities during statistical learning, providing insight into the brain's unsupervised mechanisms for building flexible and robust knowledge that generalizes across input variation and conceptual hierarchies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓军完成签到,获得积分10
2秒前
大牛顿完成签到,获得积分10
2秒前
乐乐应助淡然枫采纳,获得10
2秒前
研友_n0DWDn发布了新的文献求助10
2秒前
2秒前
3秒前
细心青烟完成签到,获得积分20
3秒前
会走路的番茄完成签到,获得积分10
3秒前
xx完成签到,获得积分10
4秒前
4秒前
科研狂徒完成签到,获得积分10
4秒前
z1z1z完成签到,获得积分10
4秒前
4秒前
木子弓长发布了新的文献求助10
4秒前
5秒前
5秒前
roser完成签到,获得积分10
5秒前
6秒前
细心青烟发布了新的文献求助20
6秒前
7秒前
勤恳觅珍发布了新的文献求助10
8秒前
8秒前
浮熙发布了新的文献求助10
8秒前
he完成签到,获得积分10
8秒前
swy发布了新的文献求助10
9秒前
9秒前
9秒前
典雅碧空应助小涛采纳,获得10
9秒前
牛马发布了新的文献求助10
9秒前
xzf1996完成签到,获得积分10
10秒前
蛋挞发布了新的文献求助10
10秒前
what发布了新的文献求助10
10秒前
刘闪闪发布了新的文献求助10
11秒前
请叫我风吹麦浪应助Hohai采纳,获得30
11秒前
11秒前
zhi应助文件撤销了驳回
11秒前
斯文败类应助勤奋的烨霖采纳,获得10
11秒前
研友_n0DWDn完成签到,获得积分10
11秒前
Stefani完成签到,获得积分10
11秒前
机智的诗兰完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836