Intracranial Entrainment Reveals Statistical Learning across Levels of Abstraction

夹带(生物音乐学) 心理学 统计学习 抽象 认知心理学 概念学习 感知 大脑活动与冥想 沟通 人工智能 脑电图 神经科学 计算机科学 节奏 美学 认识论 哲学
作者
Brynn E Sherman,Ayman Aljishi,Kathryn N. Graves,Imran H. Quraishi,Adithya Sivaraju,Eyiyemisi C. Damisah,Nicholas B. Turk-Browne
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:: 1-17
标识
DOI:10.1162/jocn_a_02012
摘要

Abstract We encounter the same people, places, and objects in predictable sequences and configurations. Humans efficiently learn these regularities via statistical learning. Importantly, statistical learning creates knowledge not only of specific regularities but also of regularities that apply more generally across related experiences (i.e., across members of a category). Prior evidence for different levels of learning comes from post-exposure behavioral tests, leaving open the question of whether more abstract regularities are detected online during initial exposure. We address this question by measuring neural entrainment in intracranial recordings. Neurosurgical patients viewed a stream of photographs with regularities at 1 of 2 levels: In the exemplar-level structured condition, the same photographs appeared repeatedly in pairs. In the category-level structured condition, the photographs were trial-unique but their categories were paired across repetitions. In a baseline random condition, the same photographs repeated but in a scrambled order. We measured entrainment at the frequency of individual photographs, which was expected in all conditions, but critically also at half that frequency—the rate at which to-be-learned pairs appeared in the 2 structured (but not random) conditions. Entrainment to both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and temporal regions. Many electrode contacts were sensitive to only one level of structure, but a significant number encoded both levels. These findings suggest that the brain spontaneously uncovers category-level regularities during statistical learning, providing insight into the brain's unsupervised mechanisms for building flexible and robust knowledge that generalizes across input variation and conceptual hierarchies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
李多多发布了新的文献求助10
2秒前
2秒前
智青驳回了iNk应助
3秒前
天真芷云完成签到 ,获得积分10
4秒前
annaanna完成签到,获得积分10
4秒前
爱吃冬瓜发布了新的文献求助10
4秒前
嗯哼应助鱼仔采纳,获得20
5秒前
5秒前
王辰北发布了新的文献求助10
6秒前
张宝发布了新的文献求助10
7秒前
火星上的沛春完成签到,获得积分10
7秒前
8秒前
思源应助lmj565采纳,获得10
8秒前
Joel发布了新的文献求助10
9秒前
guan完成签到,获得积分10
11秒前
yufei完成签到,获得积分20
13秒前
15秒前
16秒前
16秒前
JOKER完成签到,获得积分10
16秒前
NexusExplorer应助77采纳,获得30
17秒前
宁馨明完成签到,获得积分20
19秒前
瓦力文完成签到,获得积分10
19秒前
pumpkin完成签到 ,获得积分10
20秒前
20秒前
骑羊发布了新的文献求助10
21秒前
HR112应助荼蘼采纳,获得10
21秒前
大布发布了新的文献求助10
21秒前
22秒前
汉堡包应助哈哈哈哈采纳,获得10
23秒前
nnnnn完成签到 ,获得积分10
24秒前
kk完成签到,获得积分10
26秒前
28秒前
千里江山一只蝇完成签到,获得积分10
30秒前
30秒前
星辰大海应助Realrr采纳,获得10
31秒前
慕青应助6666采纳,获得10
32秒前
顾茗发布了新的文献求助10
33秒前
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129