亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning‐based prediction models for pressure injury: A systematic review and meta‐analysis

医学 荟萃分析 系统回顾 梅德林 压力伤 内科学 重症监护医学 政治学 法学
作者
Juhong Pei,Xiaojing Guo,Hongxia Tao,Yuting Wei,Hongyan Zhang,Yuxia Ma,Lin Han
出处
期刊:International Wound Journal [Wiley]
卷期号:20 (10): 4328-4339 被引量:7
标识
DOI:10.1111/iwj.14280
摘要

Abstract Despite the fact that machine learning (ML) algorithms to construct predictive models for pressure injury development are widely reported, the performance of the model remains unknown. The goal of the review was to systematically appraise the performance of ML models in predicting pressure injury. PubMed, Embase, Cochrane Library, Web of Science, CINAHL, Grey literature and other databases were systematically searched. Original journal papers were included which met the inclusion criteria. The methodological quality was assessed independently by two reviewers using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Meta‐analysis was performed with Metadisc software, with the area under the receiver operating characteristic curve, sensitivity and specificity as effect measures. Chi‐squared and I 2 tests were used to assess the heterogeneity. A total of 18 studies were included for the narrative review, and 14 of them were eligible for meta‐analysis. The models achieved excellent pooled AUC of 0.94, sensitivity of 0.79 (95% CI [0.78–0.80]) and specificity of 0.87 (95% CI [0.88–0.87]). Meta‐regressions did not provide evidence that model performance varied by data or model types. The present findings indicate that ML models show an outstanding performance in predicting pressure injury. However, good‐quality studies should be conducted to verify our results and confirm the clinical value of ML in pressure injury development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShowMaker给学习的苹果的求助进行了留言
3秒前
思源应助田柾国采纳,获得10
6秒前
桐桐应助清风浮云采纳,获得10
7秒前
17秒前
清风浮云完成签到,获得积分10
21秒前
kante完成签到,获得积分10
21秒前
田柾国发布了新的文献求助10
23秒前
34秒前
brg1小王子发布了新的文献求助10
38秒前
38秒前
43秒前
jerry完成签到,获得积分10
46秒前
小蘑菇应助科研通管家采纳,获得10
48秒前
Ava应助科研通管家采纳,获得10
48秒前
哭泣的金鱼完成签到,获得积分10
56秒前
56秒前
深情的凝云完成签到 ,获得积分10
1分钟前
1分钟前
舒适的绿蓉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
甘木鸣完成签到 ,获得积分10
1分钟前
哈哈悦完成签到,获得积分10
1分钟前
纯真冰蝶完成签到 ,获得积分10
1分钟前
1分钟前
天大青年发布了新的文献求助10
1分钟前
爆米花应助天大青年采纳,获得10
2分钟前
2分钟前
叉叉仔啊完成签到,获得积分10
2分钟前
Stella发布了新的文献求助10
2分钟前
Lucas应助娜娜采纳,获得10
2分钟前
Stella完成签到,获得积分20
2分钟前
虚心怜阳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
娜娜发布了新的文献求助10
2分钟前
2分钟前
nana2hao发布了新的文献求助20
2分钟前
耍酷的飞凤完成签到,获得积分10
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845881
捐赠科研通 2459245
什么是DOI,文献DOI怎么找? 1309130
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727