A single stage knowledge distillation network for brain tumor segmentation on limited MR image modalities

计算机科学 人工智能 阶段(地层学) 分割 模式 模态(人机交互) 蒸馏 图像(数学) 机器学习 图像分割 计算机视觉 模式识别(心理学) 自然语言处理 化学 生物 社会学 古生物学 有机化学 社会科学
作者
Yun-Chul Choi,Mohammed A. Al‐masni,Kyu‐Jin Jung,Roh‐Eul Yoo,Seong-Yeong Lee,Yejin Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107644-107644 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107644
摘要

Precisely segmenting brain tumors using multimodal Magnetic Resonance Imaging (MRI) is an essential task for early diagnosis, disease monitoring, and surgical planning. Unfortunately, the complete four image modalities utilized in the well-known BraTS benchmark dataset: T1, T2, Fluid-Attenuated Inversion Recovery (FLAIR), and T1 Contrast-Enhanced (T1CE) are not regularly acquired in clinical practice due to the high cost and long acquisition time. Rather, it is common to utilize limited image modalities for brain tumor segmentation. In this paper, we propose a single stage learning of knowledge distillation algorithm that derives information from the missing modalities for better segmentation of brain tumors. Unlike the previous works that adopted a two-stage framework to distill the knowledge from a pre-trained network into a student network, where the latter network is trained on limited image modality, we train both models simultaneously using a single-stage knowledge distillation algorithm. We transfer the information by reducing the redundancy from a teacher network trained on full image modalities to the student network using Barlow Twins loss on a latent-space level. To distill the knowledge on the pixel level, we further employ a deep supervision idea that trains the backbone networks of both teacher and student paths using Cross-Entropy loss. We demonstrate that the proposed single-stage knowledge distillation approach enables improving the performance of the student network in each tumor category with overall dice scores of 91.11% for Tumor Core, 89.70% for Enhancing Tumor, and 92.20% for Whole Tumor in the case of only using the FLAIR and T1CE images, outperforming the state-of-the-art segmentation methods. The outcomes of this work prove the feasibility of exploiting the knowledge distillation in segmenting brain tumors using limited image modalities and hence make it closer to clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助NorthWang采纳,获得10
1秒前
zhen完成签到,获得积分10
3秒前
ns发布了新的文献求助30
4秒前
5秒前
逐风完成签到,获得积分10
5秒前
无奈的酒窝完成签到,获得积分10
6秒前
6秒前
7秒前
blingbling发布了新的文献求助10
7秒前
今后应助SherlockLiu采纳,获得30
9秒前
daniel发布了新的文献求助10
9秒前
Jason应助温言采纳,获得20
10秒前
逐风发布了新的文献求助30
11秒前
hhzz发布了新的文献求助10
11秒前
日月轮回完成签到,获得积分10
12秒前
13秒前
Yimim发布了新的文献求助10
13秒前
小小li完成签到 ,获得积分10
13秒前
小蘑菇应助细腻晓露采纳,获得10
13秒前
又胖了完成签到,获得积分10
14秒前
Eva完成签到,获得积分10
15秒前
15秒前
喵喵喵完成签到,获得积分20
15秒前
独摇之完成签到,获得积分10
15秒前
怡然雁凡完成签到,获得积分10
15秒前
顾jiu完成签到,获得积分10
16秒前
科研通AI5应助热依汗古丽采纳,获得10
16秒前
优秀剑愁完成签到 ,获得积分10
16秒前
敏感网络发布了新的文献求助50
17秒前
院士人启动完成签到,获得积分10
17秒前
18秒前
黄花菜完成签到 ,获得积分0
20秒前
20秒前
顾jiu发布了新的文献求助30
20秒前
Yimim完成签到,获得积分10
20秒前
21秒前
白菜完成签到,获得积分10
21秒前
22秒前
虚心山灵完成签到 ,获得积分20
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808