A single stage knowledge distillation network for brain tumor segmentation on limited MR image modalities

计算机科学 人工智能 阶段(地层学) 分割 模式 模态(人机交互) 蒸馏 图像(数学) 机器学习 图像分割 计算机视觉 模式识别(心理学) 自然语言处理 化学 生物 社会学 古生物学 有机化学 社会科学
作者
Yun-Chul Choi,Mohammed A. Al‐masni,Kyu‐Jin Jung,Roh‐Eul Yoo,Seong-Yeong Lee,Yejin Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107644-107644 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107644
摘要

Precisely segmenting brain tumors using multimodal Magnetic Resonance Imaging (MRI) is an essential task for early diagnosis, disease monitoring, and surgical planning. Unfortunately, the complete four image modalities utilized in the well-known BraTS benchmark dataset: T1, T2, Fluid-Attenuated Inversion Recovery (FLAIR), and T1 Contrast-Enhanced (T1CE) are not regularly acquired in clinical practice due to the high cost and long acquisition time. Rather, it is common to utilize limited image modalities for brain tumor segmentation. In this paper, we propose a single stage learning of knowledge distillation algorithm that derives information from the missing modalities for better segmentation of brain tumors. Unlike the previous works that adopted a two-stage framework to distill the knowledge from a pre-trained network into a student network, where the latter network is trained on limited image modality, we train both models simultaneously using a single-stage knowledge distillation algorithm. We transfer the information by reducing the redundancy from a teacher network trained on full image modalities to the student network using Barlow Twins loss on a latent-space level. To distill the knowledge on the pixel level, we further employ a deep supervision idea that trains the backbone networks of both teacher and student paths using Cross-Entropy loss. We demonstrate that the proposed single-stage knowledge distillation approach enables improving the performance of the student network in each tumor category with overall dice scores of 91.11% for Tumor Core, 89.70% for Enhancing Tumor, and 92.20% for Whole Tumor in the case of only using the FLAIR and T1CE images, outperforming the state-of-the-art segmentation methods. The outcomes of this work prove the feasibility of exploiting the knowledge distillation in segmenting brain tumors using limited image modalities and hence make it closer to clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助流光采纳,获得10
1秒前
anton发布了新的文献求助10
1秒前
大胆的太清完成签到,获得积分20
1秒前
快到碗里来完成签到,获得积分10
2秒前
[刘小婷]发布了新的文献求助30
2秒前
芯子完成签到 ,获得积分10
2秒前
2秒前
wwx完成签到,获得积分10
3秒前
完美世界应助妩媚的舞仙采纳,获得10
3秒前
3秒前
斯文败类应助Ich采纳,获得10
4秒前
小冯发布了新的文献求助10
4秒前
LaFee完成签到,获得积分10
5秒前
花花发布了新的文献求助10
5秒前
CipherSage应助BingHe采纳,获得10
5秒前
pearl发布了新的文献求助10
5秒前
只要平凡完成签到,获得积分10
6秒前
北过居庸完成签到,获得积分10
6秒前
7秒前
我是老大应助坚强百褶裙采纳,获得10
7秒前
7秒前
7秒前
8秒前
blablawindy发布了新的文献求助10
8秒前
8秒前
浮游应助mumumuzzz采纳,获得10
8秒前
张昭蓉完成签到,获得积分10
8秒前
9秒前
LeeWX完成签到,获得积分20
9秒前
10秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
奋斗的若云完成签到,获得积分10
12秒前
12秒前
anton完成签到,获得积分10
12秒前
单纯的又菱完成签到,获得积分10
12秒前
12秒前
小脑袋发布了新的文献求助10
12秒前
共享精神应助鲜艳的手链采纳,获得10
13秒前
Owen应助hhh采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794