A single stage knowledge distillation network for brain tumor segmentation on limited MR image modalities

计算机科学 人工智能 阶段(地层学) 分割 模式 模态(人机交互) 蒸馏 图像(数学) 机器学习 图像分割 计算机视觉 模式识别(心理学) 自然语言处理 化学 生物 社会学 古生物学 有机化学 社会科学
作者
Yun-Chul Choi,Mohammed A. Al‐masni,Kyu‐Jin Jung,Roh‐Eul Yoo,Seong-Yeong Lee,Yejin Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107644-107644 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107644
摘要

Precisely segmenting brain tumors using multimodal Magnetic Resonance Imaging (MRI) is an essential task for early diagnosis, disease monitoring, and surgical planning. Unfortunately, the complete four image modalities utilized in the well-known BraTS benchmark dataset: T1, T2, Fluid-Attenuated Inversion Recovery (FLAIR), and T1 Contrast-Enhanced (T1CE) are not regularly acquired in clinical practice due to the high cost and long acquisition time. Rather, it is common to utilize limited image modalities for brain tumor segmentation. In this paper, we propose a single stage learning of knowledge distillation algorithm that derives information from the missing modalities for better segmentation of brain tumors. Unlike the previous works that adopted a two-stage framework to distill the knowledge from a pre-trained network into a student network, where the latter network is trained on limited image modality, we train both models simultaneously using a single-stage knowledge distillation algorithm. We transfer the information by reducing the redundancy from a teacher network trained on full image modalities to the student network using Barlow Twins loss on a latent-space level. To distill the knowledge on the pixel level, we further employ a deep supervision idea that trains the backbone networks of both teacher and student paths using Cross-Entropy loss. We demonstrate that the proposed single-stage knowledge distillation approach enables improving the performance of the student network in each tumor category with overall dice scores of 91.11% for Tumor Core, 89.70% for Enhancing Tumor, and 92.20% for Whole Tumor in the case of only using the FLAIR and T1CE images, outperforming the state-of-the-art segmentation methods. The outcomes of this work prove the feasibility of exploiting the knowledge distillation in segmenting brain tumors using limited image modalities and hence make it closer to clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助猪猪hero采纳,获得10
1秒前
Johnlei完成签到,获得积分10
1秒前
海德堡发布了新的文献求助10
2秒前
xr完成签到,获得积分10
7秒前
10秒前
10秒前
红叶完成签到,获得积分10
11秒前
阔达翠彤完成签到,获得积分10
14秒前
WZH完成签到 ,获得积分10
14秒前
15秒前
CipherSage应助zhao采纳,获得10
16秒前
16秒前
传奇3应助丁牛青采纳,获得10
18秒前
18秒前
喜宝完成签到 ,获得积分10
18秒前
悦耳易烟发布了新的文献求助10
23秒前
23秒前
zjw完成签到,获得积分10
25秒前
26秒前
sqz发布了新的文献求助10
27秒前
艺涵完成签到,获得积分10
27秒前
腼腆的洪纲完成签到,获得积分10
28秒前
及禾应助李田田采纳,获得10
28秒前
wanci应助微微采纳,获得10
28秒前
29秒前
30秒前
你今天学了多少完成签到 ,获得积分10
31秒前
32秒前
33秒前
林昀完成签到 ,获得积分10
33秒前
冷静的缘分完成签到 ,获得积分10
33秒前
碧蓝问玉发布了新的文献求助10
34秒前
sqz完成签到,获得积分10
34秒前
35秒前
35秒前
烟花应助怕孤单的绿柏采纳,获得10
35秒前
Benzhdw完成签到,获得积分10
35秒前
淡淡夕阳发布了新的文献求助10
36秒前
36秒前
GT发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343