A single stage knowledge distillation network for brain tumor segmentation on limited MR image modalities

计算机科学 人工智能 阶段(地层学) 分割 模式 模态(人机交互) 蒸馏 图像(数学) 机器学习 图像分割 计算机视觉 模式识别(心理学) 自然语言处理 化学 生物 社会学 古生物学 有机化学 社会科学
作者
Yun-Chul Choi,Mohammed A. Al‐masni,Kyu‐Jin Jung,Roh‐Eul Yoo,Seong-Yeong Lee,Yejin Kim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107644-107644 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107644
摘要

Precisely segmenting brain tumors using multimodal Magnetic Resonance Imaging (MRI) is an essential task for early diagnosis, disease monitoring, and surgical planning. Unfortunately, the complete four image modalities utilized in the well-known BraTS benchmark dataset: T1, T2, Fluid-Attenuated Inversion Recovery (FLAIR), and T1 Contrast-Enhanced (T1CE) are not regularly acquired in clinical practice due to the high cost and long acquisition time. Rather, it is common to utilize limited image modalities for brain tumor segmentation. In this paper, we propose a single stage learning of knowledge distillation algorithm that derives information from the missing modalities for better segmentation of brain tumors. Unlike the previous works that adopted a two-stage framework to distill the knowledge from a pre-trained network into a student network, where the latter network is trained on limited image modality, we train both models simultaneously using a single-stage knowledge distillation algorithm. We transfer the information by reducing the redundancy from a teacher network trained on full image modalities to the student network using Barlow Twins loss on a latent-space level. To distill the knowledge on the pixel level, we further employ a deep supervision idea that trains the backbone networks of both teacher and student paths using Cross-Entropy loss. We demonstrate that the proposed single-stage knowledge distillation approach enables improving the performance of the student network in each tumor category with overall dice scores of 91.11% for Tumor Core, 89.70% for Enhancing Tumor, and 92.20% for Whole Tumor in the case of only using the FLAIR and T1CE images, outperforming the state-of-the-art segmentation methods. The outcomes of this work prove the feasibility of exploiting the knowledge distillation in segmenting brain tumors using limited image modalities and hence make it closer to clinical practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助蚂蚁的奋斗采纳,获得10
1秒前
大气乐儿发布了新的文献求助10
1秒前
正直的雁开完成签到,获得积分20
1秒前
所所应助人不犯二枉少年采纳,获得10
1秒前
嗯嗯完成签到,获得积分20
2秒前
勤奋的灯发布了新的文献求助10
3秒前
利好完成签到 ,获得积分10
3秒前
科研通AI6应助ash采纳,获得10
3秒前
打打应助ash采纳,获得10
3秒前
嘻嘻完成签到 ,获得积分10
4秒前
锅嘚硬发布了新的文献求助10
4秒前
拼搏的飞薇完成签到,获得积分10
4秒前
无奈凉面完成签到,获得积分10
5秒前
耳朵儿歌发布了新的文献求助100
5秒前
Proddy完成签到,获得积分10
5秒前
6秒前
大模型应助文静盈采纳,获得10
6秒前
sia完成签到,获得积分10
6秒前
饱满以松发布了新的文献求助10
6秒前
6秒前
小鱼完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
科研通AI6应助洁净的千凡采纳,获得10
7秒前
317完成签到,获得积分10
7秒前
lin完成签到 ,获得积分10
7秒前
8秒前
輕語完成签到,获得积分10
9秒前
9秒前
活ni的pig完成签到 ,获得积分10
9秒前
科研小菜狗完成签到 ,获得积分10
9秒前
zyx完成签到,获得积分10
9秒前
9秒前
9秒前
小曦仔完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034