Intrusion Detection using hybridized Meta-heuristic techniques with Weighted XGBoost Classifier

计算机科学 人工智能 元启发式 分类器(UML) 入侵检测系统 机器学习 启发式 模式识别(心理学) 数据挖掘 算法
作者
Ghulam Mohi-Ud-Din,Lin Zhijun,Jiangbin Zheng,Junsheng Wu,W. G. Li,Yifan Fang,Sifei Wang,Jiajun Chen,Xinyu Zeng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:232: 120596-120596 被引量:17
标识
DOI:10.1016/j.eswa.2023.120596
摘要

Due to the widespread global internet services, service providers and users face a primary problem defending their systems, specifically from a new category of attacks and breaches. Network Intrusion Detection system (NIDS) assesses the network packets and reports low-security violations to respective system administrators. In the case of large imbalance datasets with more non-relevant features, the accuracy in classifying ad predicting precise intrusions needs to be improved. Moreover, most state-of-art intrusion-detection models based on machine learning may face high false-positive rates, imbalanced data with low training performance, low accuracy in detection, and complexity in optimization of feature selection aiding classification for impersonation attacks. Hence to overcome those complications, the present study deliberates an efficient IDS Modified Wrapper-based Whale Sine-cosine algorithm (MWWSCA) with Weighted Extreme Gradient Boosting (XgBoost) Classifier. The proposed model hybridizes the modified wrapper Whale Optimisation approach and Sine-Cosine algorithm feature selection method to pick out the most discriminative, associated, and approximate best optimal features, enhancing the quality of prediction, not to fall on towards optimal local solution. Moreover, it balances out the exploitation and exploration phase of the model. However, the algorithm’s performance may decline on classifying the multi-attack and binary attacks accurately and may be prone to an imbalance in classes; thus, a Weighted XGBoost classifier with regularisation of the loss function is implemented in binary and multi-classification. It utilizes the best optimal features, assign high weights to weak minor class features, and handles class imbalance issues. Overfitting of the model is tackled through regularisation in the loss function during the stage of feature classification. The experimental outcomes and comparative assessment, in multi-class and binary attack classification from UNSW-NB15 and CICIDS datasets, explicated outperforming results with high accuracy, Precision, Recall, and F1-Score metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助aibiotech采纳,获得10
1秒前
小四发布了新的文献求助10
1秒前
豆豆完成签到,获得积分10
2秒前
SciGPT应助第七个星球采纳,获得10
3秒前
3秒前
4秒前
777发布了新的文献求助10
4秒前
从容秋寒完成签到,获得积分20
5秒前
科研通AI5应助罗明芳采纳,获得10
5秒前
leilei完成签到 ,获得积分10
5秒前
陈述发布了新的文献求助10
6秒前
bone完成签到,获得积分10
7秒前
李李发布了新的文献求助20
7秒前
8秒前
未青易发布了新的文献求助10
8秒前
寒战发布了新的文献求助10
8秒前
9秒前
啦啦啦啦啦完成签到 ,获得积分10
9秒前
9秒前
Wri完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
陈述完成签到,获得积分20
13秒前
Wri发布了新的文献求助10
14秒前
刘浩然发布了新的文献求助10
14秒前
冯冯发布了新的文献求助10
15秒前
16秒前
16秒前
王粒完成签到,获得积分10
17秒前
17秒前
18秒前
刘浩然完成签到,获得积分10
18秒前
小白应助未青易采纳,获得20
19秒前
19秒前
走四方应助第七个星球采纳,获得10
20秒前
21秒前
六尺巷发布了新的文献求助10
22秒前
gogogo发布了新的文献求助10
24秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427