An evaluation of masking nuisance odors from a source by chemical and sensory analyses

讨厌的人 遮罩(插图) 气味 感觉系统 环境科学 心理学 生物 生态学 艺术 认知心理学 神经科学 视觉艺术
作者
I. H. Suffet,V. Decottignies,Yubin Zhou,Yuge Bian,Tadeo Vitko
出处
期刊:Water Environment Research [Wiley]
卷期号:95 (7) 被引量:3
标识
DOI:10.1002/wer.10901
摘要

Abstract There are many products in the market advertised as masking agents used to overpower strong nuisance odors, such as in or around water resource recovery facilities, solid waste processing facilities, landfills, composting sites, and so forth. Very little is known about the chemical component of these masking agents because they are protected by trade secrets. This is a problem for the parties involved, as the process of choosing the most adequate agent for the particular odor source falls into guesswork. This paper demonstrates that it is possible to determine how effective the masking product would be before spending time and resources in trials. It proposes to show this by comparing the Weber–Fechner curves of the odor‐causing compounds known to be emitted at the facility with the curves from the potential masking agents prepared in the laboratory using an olfactometer. Several sensorial examples show that when the Weber–Fechner curves of the odorants and those of candidate masking agents are compared, it is possible to define the effectiveness of the masking agent tested. This is a novel use of the Weber–Fechner curves. The results show there is direct correlation between what is observed by a panel with real life odor samples subjected to incremental dilution and the Weber–Fechner odor intensity‐odor concentration curve interaction between the odorants involved. Future work characterizing additional potential masking compounds by Weber–Fechner accompanied by odor profiling with dynamic olfactometry should shed light on the definitive effectiveness of this method in predicting masking effects and discovering useful masking compounds. Practitioner Points Weber–Fechner curves provide relationships between odorant concentration and odor intensity. Dynamic olfactometry, in which real‐life air samples are sensorially analyzed by the odor profile method after subsequent dilutions, shows that odor masking occurs. Analyzing the Weber–Fechner curves of the odorants present in the dynamic olfactometry test show the existing odorant interactions. It is possible to predict the extent of the masking of potential compounds by comparing Weber–Fechner curves of masking agents against odorants causing nuisance. This methodology could help avoid spending resources in masking field trials that may result in further exacerbating the affected public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddw完成签到,获得积分10
1秒前
lft361应助蛋蛋采纳,获得10
1秒前
Dr_zsc完成签到,获得积分10
2秒前
2秒前
bela完成签到,获得积分10
2秒前
共享精神应助xiaoxiao采纳,获得10
3秒前
艾伊发布了新的文献求助10
3秒前
3秒前
4秒前
涨涨涨发布了新的文献求助30
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
Criminology34应助科研通管家采纳,获得30
4秒前
量子星尘发布了新的文献求助10
4秒前
赘婿应助科研通管家采纳,获得30
4秒前
5秒前
eleven完成签到,获得积分10
5秒前
5秒前
6秒前
zzzjh发布了新的文献求助10
6秒前
7890733发布了新的文献求助10
7秒前
Ava应助Liuj采纳,获得10
7秒前
姚姚发布了新的文献求助10
9秒前
希望天下0贩的0应助压缩采纳,获得10
9秒前
arui发布了新的文献求助10
9秒前
Yuki发布了新的文献求助10
10秒前
ddw发布了新的文献求助10
10秒前
11秒前
鲜艳的巧曼完成签到 ,获得积分10
12秒前
zzzjh完成签到,获得积分10
12秒前
13秒前
15秒前
侯侯完成签到,获得积分10
15秒前
Criminology34应助7890733采纳,获得10
16秒前
hbhbj应助7890733采纳,获得10
16秒前
17秒前
JYY发布了新的文献求助10
18秒前
19秒前
小二郎应助渴望者采纳,获得10
19秒前
浮游应助噼里啪啦采纳,获得30
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742