An evaluation of masking nuisance odors from a source by chemical and sensory analyses

讨厌的人 遮罩(插图) 气味 感觉系统 环境科学 心理学 生物 生态学 艺术 认知心理学 神经科学 视觉艺术
作者
I. H. Suffet,V. Decottignies,Yubin Zhou,Yuge Bian,Tadeo Vitko
出处
期刊:Water Environment Research [Wiley]
卷期号:95 (7): e10901-e10901 被引量:5
标识
DOI:10.1002/wer.10901
摘要

Abstract There are many products in the market advertised as masking agents used to overpower strong nuisance odors, such as in or around water resource recovery facilities, solid waste processing facilities, landfills, composting sites, and so forth. Very little is known about the chemical component of these masking agents because they are protected by trade secrets. This is a problem for the parties involved, as the process of choosing the most adequate agent for the particular odor source falls into guesswork. This paper demonstrates that it is possible to determine how effective the masking product would be before spending time and resources in trials. It proposes to show this by comparing the Weber–Fechner curves of the odor‐causing compounds known to be emitted at the facility with the curves from the potential masking agents prepared in the laboratory using an olfactometer. Several sensorial examples show that when the Weber–Fechner curves of the odorants and those of candidate masking agents are compared, it is possible to define the effectiveness of the masking agent tested. This is a novel use of the Weber–Fechner curves. The results show there is direct correlation between what is observed by a panel with real life odor samples subjected to incremental dilution and the Weber–Fechner odor intensity‐odor concentration curve interaction between the odorants involved. Future work characterizing additional potential masking compounds by Weber–Fechner accompanied by odor profiling with dynamic olfactometry should shed light on the definitive effectiveness of this method in predicting masking effects and discovering useful masking compounds. Practitioner Points Weber–Fechner curves provide relationships between odorant concentration and odor intensity. Dynamic olfactometry, in which real‐life air samples are sensorially analyzed by the odor profile method after subsequent dilutions, shows that odor masking occurs. Analyzing the Weber–Fechner curves of the odorants present in the dynamic olfactometry test show the existing odorant interactions. It is possible to predict the extent of the masking of potential compounds by comparing Weber–Fechner curves of masking agents against odorants causing nuisance. This methodology could help avoid spending resources in masking field trials that may result in further exacerbating the affected public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助William采纳,获得10
刚刚
积极的邪欢完成签到,获得积分10
刚刚
二十二应助御风采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
萌&完成签到,获得积分10
1秒前
kento给鱿鱼的求助进行了留言
1秒前
2秒前
2秒前
2秒前
3秒前
刘47发布了新的文献求助10
3秒前
皮蛋solo粥完成签到,获得积分20
3秒前
称心的猫咪完成签到,获得积分10
4秒前
Owen应助Lorain采纳,获得10
4秒前
机灵语雪完成签到,获得积分10
4秒前
5秒前
jia完成签到,获得积分20
5秒前
Xu完成签到,获得积分20
6秒前
Lumos发布了新的文献求助10
6秒前
6秒前
6秒前
白开水发布了新的文献求助10
6秒前
wuyuzegang发布了新的文献求助10
6秒前
7秒前
小x完成签到,获得积分20
7秒前
烟花应助paulhsy采纳,获得10
7秒前
skycrygg521发布了新的文献求助10
7秒前
6640发布了新的文献求助10
8秒前
8秒前
BowieHuang应助kk采纳,获得10
8秒前
歪歪大王完成签到,获得积分10
9秒前
tiantian完成签到,获得积分10
10秒前
10秒前
10秒前
Chenyy完成签到,获得积分10
11秒前
11秒前
11秒前
殷昭慧发布了新的文献求助10
12秒前
科研通AI2S应助典雅的书蝶采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709862
求助须知:如何正确求助?哪些是违规求助? 5196870
关于积分的说明 15258745
捐赠科研通 4862555
什么是DOI,文献DOI怎么找? 2610161
邀请新用户注册赠送积分活动 1560499
关于科研通互助平台的介绍 1518208