An evaluation of masking nuisance odors from a source by chemical and sensory analyses

讨厌的人 遮罩(插图) 气味 感觉系统 环境科学 心理学 生物 生态学 艺术 认知心理学 神经科学 视觉艺术
作者
I. H. Suffet,V. Decottignies,Yubin Zhou,Yuge Bian,Tadeo Vitko
出处
期刊:Water Environment Research [Wiley]
卷期号:95 (7) 被引量:3
标识
DOI:10.1002/wer.10901
摘要

Abstract There are many products in the market advertised as masking agents used to overpower strong nuisance odors, such as in or around water resource recovery facilities, solid waste processing facilities, landfills, composting sites, and so forth. Very little is known about the chemical component of these masking agents because they are protected by trade secrets. This is a problem for the parties involved, as the process of choosing the most adequate agent for the particular odor source falls into guesswork. This paper demonstrates that it is possible to determine how effective the masking product would be before spending time and resources in trials. It proposes to show this by comparing the Weber–Fechner curves of the odor‐causing compounds known to be emitted at the facility with the curves from the potential masking agents prepared in the laboratory using an olfactometer. Several sensorial examples show that when the Weber–Fechner curves of the odorants and those of candidate masking agents are compared, it is possible to define the effectiveness of the masking agent tested. This is a novel use of the Weber–Fechner curves. The results show there is direct correlation between what is observed by a panel with real life odor samples subjected to incremental dilution and the Weber–Fechner odor intensity‐odor concentration curve interaction between the odorants involved. Future work characterizing additional potential masking compounds by Weber–Fechner accompanied by odor profiling with dynamic olfactometry should shed light on the definitive effectiveness of this method in predicting masking effects and discovering useful masking compounds. Practitioner Points Weber–Fechner curves provide relationships between odorant concentration and odor intensity. Dynamic olfactometry, in which real‐life air samples are sensorially analyzed by the odor profile method after subsequent dilutions, shows that odor masking occurs. Analyzing the Weber–Fechner curves of the odorants present in the dynamic olfactometry test show the existing odorant interactions. It is possible to predict the extent of the masking of potential compounds by comparing Weber–Fechner curves of masking agents against odorants causing nuisance. This methodology could help avoid spending resources in masking field trials that may result in further exacerbating the affected public.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气鞯发布了新的文献求助10
刚刚
123321321345完成签到,获得积分10
1秒前
务实的蛋挞完成签到,获得积分20
2秒前
2秒前
wl17865313955发布了新的文献求助10
3秒前
Catherine_Song完成签到 ,获得积分10
4秒前
冰点完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
结实乐荷完成签到,获得积分20
8秒前
zhw297发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
durance完成签到,获得积分10
13秒前
酷波er应助春亦晚采纳,获得10
13秒前
13秒前
14秒前
kiteWYL完成签到,获得积分10
14秒前
贪玩的小蜜蜂完成签到,获得积分10
15秒前
小蘑菇应助xixi采纳,获得10
15秒前
15秒前
Zhua子完成签到,获得积分10
15秒前
15秒前
jovrtic发布了新的文献求助10
15秒前
英姑应助聪慧仇天采纳,获得10
16秒前
16秒前
鲜艳的梦柏完成签到,获得积分10
17秒前
Adzuki0812发布了新的文献求助10
18秒前
9089090发布了新的文献求助10
18秒前
打打应助罗氏集团采纳,获得10
18秒前
19秒前
20秒前
daniel完成签到,获得积分10
20秒前
xy完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
嗯很好发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548123
求助须知:如何正确求助?哪些是违规求助? 4633417
关于积分的说明 14631222
捐赠科研通 4575059
什么是DOI,文献DOI怎么找? 2508825
邀请新用户注册赠送积分活动 1485072
关于科研通互助平台的介绍 1456096