清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An evaluation of masking nuisance odors from a source by chemical and sensory analyses

讨厌的人 遮罩(插图) 气味 感觉系统 环境科学 心理学 生物 生态学 艺术 认知心理学 神经科学 视觉艺术
作者
I. H. Suffet,V. Decottignies,Yubin Zhou,Yuge Bian,Tadeo Vitko
出处
期刊:Water Environment Research [Wiley]
卷期号:95 (7) 被引量:3
标识
DOI:10.1002/wer.10901
摘要

Abstract There are many products in the market advertised as masking agents used to overpower strong nuisance odors, such as in or around water resource recovery facilities, solid waste processing facilities, landfills, composting sites, and so forth. Very little is known about the chemical component of these masking agents because they are protected by trade secrets. This is a problem for the parties involved, as the process of choosing the most adequate agent for the particular odor source falls into guesswork. This paper demonstrates that it is possible to determine how effective the masking product would be before spending time and resources in trials. It proposes to show this by comparing the Weber–Fechner curves of the odor‐causing compounds known to be emitted at the facility with the curves from the potential masking agents prepared in the laboratory using an olfactometer. Several sensorial examples show that when the Weber–Fechner curves of the odorants and those of candidate masking agents are compared, it is possible to define the effectiveness of the masking agent tested. This is a novel use of the Weber–Fechner curves. The results show there is direct correlation between what is observed by a panel with real life odor samples subjected to incremental dilution and the Weber–Fechner odor intensity‐odor concentration curve interaction between the odorants involved. Future work characterizing additional potential masking compounds by Weber–Fechner accompanied by odor profiling with dynamic olfactometry should shed light on the definitive effectiveness of this method in predicting masking effects and discovering useful masking compounds. Practitioner Points Weber–Fechner curves provide relationships between odorant concentration and odor intensity. Dynamic olfactometry, in which real‐life air samples are sensorially analyzed by the odor profile method after subsequent dilutions, shows that odor masking occurs. Analyzing the Weber–Fechner curves of the odorants present in the dynamic olfactometry test show the existing odorant interactions. It is possible to predict the extent of the masking of potential compounds by comparing Weber–Fechner curves of masking agents against odorants causing nuisance. This methodology could help avoid spending resources in masking field trials that may result in further exacerbating the affected public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助帮帮我好吗采纳,获得10
11秒前
方白秋完成签到,获得积分10
46秒前
依然灬聆听完成签到,获得积分10
1分钟前
感性的道之完成签到 ,获得积分10
2分钟前
小巧的怜晴完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
阿宝完成签到 ,获得积分10
2分钟前
wangye完成签到 ,获得积分10
3分钟前
方琼燕完成签到 ,获得积分10
4分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
4分钟前
科目三应助zhouleiwang采纳,获得10
4分钟前
丘比特应助帮帮我好吗采纳,获得10
4分钟前
5分钟前
快乐小狗发布了新的文献求助10
5分钟前
5分钟前
Meredith完成签到,获得积分10
5分钟前
乐乐应助快乐小狗采纳,获得30
5分钟前
6分钟前
6分钟前
6分钟前
呼风唤雨发布了新的文献求助10
6分钟前
繁馥然发布了新的文献求助20
6分钟前
呼风唤雨完成签到,获得积分10
6分钟前
marska完成签到,获得积分10
7分钟前
繁馥然完成签到,获得积分10
7分钟前
7分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
7分钟前
8分钟前
章铭-111发布了新的文献求助10
8分钟前
章铭-111完成签到,获得积分10
8分钟前
8分钟前
白华苍松发布了新的文献求助10
8分钟前
8分钟前
葛力发布了新的文献求助10
8分钟前
Eric800824完成签到 ,获得积分10
9分钟前
poegtam完成签到,获得积分10
9分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
9分钟前
严珍珍完成签到 ,获得积分10
9分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
10分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625513
版权声明 600997