An evaluation of masking nuisance odors from a source by chemical and sensory analyses

讨厌的人 遮罩(插图) 气味 感觉系统 环境科学 心理学 生物 生态学 艺术 认知心理学 神经科学 视觉艺术
作者
I. H. Suffet,V. Decottignies,Yubin Zhou,Yuge Bian,Tadeo Vitko
出处
期刊:Water Environment Research [Wiley]
卷期号:95 (7): e10901-e10901 被引量:5
标识
DOI:10.1002/wer.10901
摘要

Abstract There are many products in the market advertised as masking agents used to overpower strong nuisance odors, such as in or around water resource recovery facilities, solid waste processing facilities, landfills, composting sites, and so forth. Very little is known about the chemical component of these masking agents because they are protected by trade secrets. This is a problem for the parties involved, as the process of choosing the most adequate agent for the particular odor source falls into guesswork. This paper demonstrates that it is possible to determine how effective the masking product would be before spending time and resources in trials. It proposes to show this by comparing the Weber–Fechner curves of the odor‐causing compounds known to be emitted at the facility with the curves from the potential masking agents prepared in the laboratory using an olfactometer. Several sensorial examples show that when the Weber–Fechner curves of the odorants and those of candidate masking agents are compared, it is possible to define the effectiveness of the masking agent tested. This is a novel use of the Weber–Fechner curves. The results show there is direct correlation between what is observed by a panel with real life odor samples subjected to incremental dilution and the Weber–Fechner odor intensity‐odor concentration curve interaction between the odorants involved. Future work characterizing additional potential masking compounds by Weber–Fechner accompanied by odor profiling with dynamic olfactometry should shed light on the definitive effectiveness of this method in predicting masking effects and discovering useful masking compounds. Practitioner Points Weber–Fechner curves provide relationships between odorant concentration and odor intensity. Dynamic olfactometry, in which real‐life air samples are sensorially analyzed by the odor profile method after subsequent dilutions, shows that odor masking occurs. Analyzing the Weber–Fechner curves of the odorants present in the dynamic olfactometry test show the existing odorant interactions. It is possible to predict the extent of the masking of potential compounds by comparing Weber–Fechner curves of masking agents against odorants causing nuisance. This methodology could help avoid spending resources in masking field trials that may result in further exacerbating the affected public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柠檬完成签到 ,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
FashionBoy应助灵巧晓亦采纳,获得10
3秒前
小鱼关注了科研通微信公众号
6秒前
6秒前
7秒前
yyy完成签到 ,获得积分10
8秒前
万物春发布了新的文献求助10
10秒前
充电宝应助A晨采纳,获得10
11秒前
所所应助ENO_i采纳,获得10
12秒前
尊敬熊完成签到,获得积分10
12秒前
13秒前
何倩发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
Jaden完成签到,获得积分10
14秒前
16秒前
调皮帆布鞋完成签到,获得积分10
18秒前
三寸光阴一个鑫应助Bazinga采纳,获得10
19秒前
清水发布了新的文献求助10
19秒前
20秒前
轻舟未过万重山完成签到,获得积分10
24秒前
24秒前
岑笨笨完成签到,获得积分20
25秒前
25秒前
25秒前
怡然发布了新的文献求助10
26秒前
佟谷兰发布了新的文献求助10
27秒前
隐形曼青应助现实的鹏飞采纳,获得10
29秒前
李健的小迷弟应助kdjm688采纳,获得10
30秒前
尊敬熊发布了新的文献求助20
31秒前
zrkkk完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
醉清风完成签到 ,获得积分10
33秒前
小屁孩完成签到,获得积分10
34秒前
34秒前
小蜜蜂发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679710
求助须知:如何正确求助?哪些是违规求助? 4993216
关于积分的说明 15170566
捐赠科研通 4839549
什么是DOI,文献DOI怎么找? 2593456
邀请新用户注册赠送积分活动 1546531
关于科研通互助平台的介绍 1504659