Exploration of s new biomarker in osteosarcoma and association with clinical outcomes: TOP2A+cancer associated fibroblasts

骨肉瘤 转录组 癌症 生物标志物 Lasso(编程语言) 癌症研究 基因 肿瘤科 肿瘤微环境 生物 计算生物学 生物信息学 内科学 医学 基因表达 计算机科学 遗传学 万维网
作者
Yuanze Xu,Pingping Chen,Dongsong Liu,Qin Xu,Hao Meng,Xuesong Wang
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:25 (11) 被引量:3
标识
DOI:10.1002/jgm.3528
摘要

Osteosarcoma (OS) is the leading malignant primary bone tumor in young adults and children and has a high mortality rate. Cancer-associated fibroblasts (CAFs) are major components of the tumor microenvironment, influencing cancer progression and metastasis. However, there is no systematic study on the role of CAF in OS.We collected six OS patients' single-cell RNA sequencing data from the TISCH database, which was processed using the Seurat package. We selected gene sets from the well-known MSigDB database and resorted to the clusterprofiler package for gene set enrichment analysis (GSEA). The least absolute shrinkage and selection operator (LASSO) regression model was used for identification of the variables. Receiver operating characteristic and decision curve analyses were utilized for determining the efficacy of the monogram model.TOP2A+ CAFs was recognized as the carcinogenic CAFs subset, given its intense interaction with OS malignant cells and association with the critical cancer driver pathway. We intersected the differentially expressed genes of TOP2A+ CAFs with the prognostic genes selected from 88 OS samples. The acquired gene set was selected using the LASSO regression model and integrated with clinical factors to obtain a monogram model of high prognosis predicting power (area under the curve of 5 year survival at 0.883). Functional enrichment analysis revealed the detailed difference between two risk groups.We identified TOP2A+ CAFs as a subset of oncogenic CAFs in OS. Based on differentially expressed genes derived from TOP2A+ CAFs, combined with bulk transcriptome prognostic genes, we constructed a risk model that can efficiently predict OS prognosis. Collectively, our study may provide new insights for future studies to elucidate the role of CAF in OS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕一笑完成签到,获得积分10
刚刚
荒诞DE谎言完成签到 ,获得积分10
刚刚
jeffrey完成签到,获得积分10
1秒前
贾舒涵完成签到,获得积分10
2秒前
Polymer72应助清醒的一条狗采纳,获得10
2秒前
苏震坤发布了新的文献求助10
2秒前
Ulrica完成签到,获得积分10
3秒前
张瑞雪完成签到 ,获得积分10
4秒前
mp5完成签到,获得积分10
5秒前
gkhsdvkb完成签到 ,获得积分10
12秒前
爱生气的小龙完成签到 ,获得积分10
13秒前
思源应助凌代萱采纳,获得10
16秒前
LEMONS完成签到 ,获得积分10
17秒前
青山完成签到 ,获得积分10
21秒前
会思考的狐狸完成签到 ,获得积分10
23秒前
科研通AI2S应助lyqs215采纳,获得20
24秒前
刘三哥完成签到,获得积分10
31秒前
聪明的秋天完成签到,获得积分10
34秒前
benyu完成签到,获得积分10
34秒前
仁爱的觅夏完成签到,获得积分10
40秒前
40秒前
小刘爱读文献完成签到 ,获得积分10
41秒前
阿包完成签到 ,获得积分10
42秒前
hopeful完成签到 ,获得积分10
44秒前
xt完成签到 ,获得积分10
44秒前
凌代萱发布了新的文献求助10
45秒前
Shicheng完成签到,获得积分10
46秒前
精明子默完成签到 ,获得积分10
46秒前
淡然的糖豆完成签到 ,获得积分10
46秒前
Polymer72应助清醒的一条狗采纳,获得10
47秒前
drift完成签到,获得积分10
52秒前
乐观海云完成签到 ,获得积分10
54秒前
烟花应助安静的季节采纳,获得10
54秒前
浮尘完成签到 ,获得积分0
54秒前
木木完成签到 ,获得积分10
55秒前
虚幻元风完成签到 ,获得积分10
57秒前
1分钟前
淞33完成签到 ,获得积分10
1分钟前
sdfdzhang完成签到 ,获得积分10
1分钟前
欢喜板凳完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335484
求助须知:如何正确求助?哪些是违规求助? 2964524
关于积分的说明 8614307
捐赠科研通 2643432
什么是DOI,文献DOI怎么找? 1447485
科研通“疑难数据库(出版商)”最低求助积分说明 670664
邀请新用户注册赠送积分活动 659032