Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training

计算机科学 试验台 情态动词 和声(颜色) 模态(人机交互) 人工智能 机器学习 分布式计算 计算机网络 艺术 视觉艺术 化学 高分子化学
作者
Xiaomin Ouyang,Zhiyuan Xie,Heming Fu,Sitong Cheng,L J Pan,Neiwen Ling,Guoliang Xing,Jiayu Zhou,Jianwei Huang
标识
DOI:10.1145/3581791.3596844
摘要

Multi-modal sensing systems are increasingly prevalent in real-world applications such as health monitoring and autonomous driving. Most multi-modal learning approaches need to access users' raw data, which poses significant concerns to users' privacy. Federated learning (FL) provides a privacy-aware distributed learning framework. However, current FL approaches have not addressed the unique challenges of heterogeneous multi-modal FL systems, such as modality heterogeneity and significantly longer training delay. In this paper, we propose Harmony, a new system for heterogeneous multi-modal federated learning. Harmony disentangles the multi-modal network training in a novel two-stage framework, namely modality-wise federated learning and federated fusion learning. By integrating a novel balance-aware resource allocation mechanism in modality-wise FL and exploiting modality biases in federated fusion learning, Harmony improves the model accuracy under non-i.i.d. data distributions and speeds up system convergence. We implemented Harmony on a real-world multi-modal sensor testbed deployed in the homes of 16 elderly subjects for Alzheimer's Disease monitoring. Our evaluation on the testbed and three large-scale public datasets of different applications show that, Harmony outperforms by up to 46.35% accuracy over state-of-the-art baselines and saves up to 30% training delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zhoushishan发布了新的文献求助10
2秒前
Jxw完成签到,获得积分10
2秒前
4秒前
杰杰完成签到 ,获得积分10
4秒前
4秒前
超级小刺猬完成签到 ,获得积分10
6秒前
坦率的从丹完成签到 ,获得积分10
6秒前
7秒前
勿念完成签到,获得积分20
7秒前
7秒前
贪玩飞珍发布了新的文献求助10
8秒前
9秒前
科目三应助科研通管家采纳,获得10
11秒前
Momomo应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小Y应助科研通管家采纳,获得20
11秒前
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
小米发布了新的文献求助10
12秒前
杰杰关注了科研通微信公众号
12秒前
852应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得30
13秒前
14秒前
雷霆康康完成签到,获得积分10
14秒前
15秒前
石广明关注了科研通微信公众号
15秒前
冷静丸子完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495177
求助须知:如何正确求助?哪些是违规求助? 4592877
关于积分的说明 14439094
捐赠科研通 4525740
什么是DOI,文献DOI怎么找? 2479654
邀请新用户注册赠送积分活动 1464467
关于科研通互助平台的介绍 1437333