亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Triplet–Triplet Annihilation Enhanced Deep‐Blue Organic Light‐Emitting Diodes by Naphtho[1,2‐d]imidazole‐Isomer Derivatives with Spin–Orbit Coupling

有机发光二极管 材料科学 激子 单重态 电致发光 消灭 光化学 激发态 色度 量子效率 自旋(空气动力学) 量子产额 磷光 轨道能级差 光电子学 原子物理学 荧光 化学 物理 凝聚态物理 光学 纳米技术 分子 粒子物理学 有机化学 热力学 图层(电子)
作者
Guo‐Xi Yang,Deng‐Hui Liu,Qing Gu,Xiaomei Peng,Deli Li,Mengke Li,Ming Liu,Jie Chen,Kunkun Liu,Shi‐Jian Su
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:11 (18) 被引量:12
标识
DOI:10.1002/adom.202300455
摘要

Abstract The utilization of triplet excitons is of great importance for organic light‐emitting diodes (OLEDs). Triplet–triplet annihilation (TTA) is one of the effective tactics to achieve high efficiency deep‐blue organic electroluminescence emitters by converting two triplet excitons into one singlet exciton. Whereas, in addition to the 25% electrogenerated singlet excitons, the proportion of radiative singlet excitons (RSE) produced by the TTA process is usually only 15%; thus the total radiative excitons are 40%. In this study, ≈35% of RSE is achieved by the TTA process (total 60%) with two deep‐blue emitters based on the isomeric naphthoimidazole (NI) unit and anthracene bridge. As a result, non‐doped OLEDs based on the two NI derivatives as emitting layers achieve maximum external quantum efficiencies of 10.9% and 11.2% with an identical deep‐blue emission peak of 452 nm, which are the best TTA OLEDs with a Commission Internationale de l'Eclairage chromaticity Y coordinate below 0.15. Theoretical and experimental results demonstrate that the TTA process can be improved owing to the efficient spin–orbit interactions, even though the energy levels of the triplet pairs are higher than the calculated second triplet excited states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桦奕兮完成签到 ,获得积分10
4秒前
CWY发布了新的文献求助50
14秒前
彭于晏应助wdsgkfjhn采纳,获得10
23秒前
飞天大南瓜完成签到,获得积分10
37秒前
终归完成签到 ,获得积分10
42秒前
42秒前
MchemG应助科研通管家采纳,获得20
49秒前
MchemG应助科研通管家采纳,获得20
49秒前
Criminology34应助科研通管家采纳,获得10
49秒前
辉辉应助科研通管家采纳,获得10
49秒前
55秒前
57秒前
Epiphany发布了新的文献求助10
1分钟前
13633501455完成签到 ,获得积分10
1分钟前
1分钟前
犬来八荒发布了新的文献求助10
1分钟前
1分钟前
Epiphany完成签到,获得积分10
1分钟前
1分钟前
上官若男应助温婉的凝雁采纳,获得10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
温婉的凝雁完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
王玉发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Cherry发布了新的文献求助10
3分钟前
3分钟前
昌莆完成签到 ,获得积分10
3分钟前
3分钟前
冉亦完成签到,获得积分10
3分钟前
搜集达人应助null采纳,获得10
3分钟前
可爱的函函应助香菜肉丸采纳,获得10
3分钟前
3分钟前
平淡映秋发布了新的文献求助10
3分钟前
focus完成签到 ,获得积分10
3分钟前
香菜肉丸发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091