有机发光二极管
材料科学
激子
单重态
电致发光
消灭
光化学
蒽
激发态
色度
量子效率
自旋(空气动力学)
量子产额
磷光
三重态
光电子学
原子物理学
荧光
化学
物理
凝聚态物理
光学
纳米技术
粒子物理学
图层(电子)
热力学
作者
Guangsai Yang,Deng‐Hui Liu,Qing Gu,Xiaomei Peng,Deli Li,Mengke Li,Ming Liu,Jie Chen,Kunkun Liu,Shi‐Jian Su
标识
DOI:10.1002/adom.202300455
摘要
Abstract The utilization of triplet excitons is of great importance for organic light‐emitting diodes (OLEDs). Triplet–triplet annihilation (TTA) is one of the effective tactics to achieve high efficiency deep‐blue organic electroluminescence emitters by converting two triplet excitons into one singlet exciton. Whereas, in addition to the 25% electrogenerated singlet excitons, the proportion of radiative singlet excitons (RSE) produced by the TTA process is usually only 15%; thus the total radiative excitons are 40%. In this study, ≈35% of RSE is achieved by the TTA process (total 60%) with two deep‐blue emitters based on the isomeric naphthoimidazole (NI) unit and anthracene bridge. As a result, non‐doped OLEDs based on the two NI derivatives as emitting layers achieve maximum external quantum efficiencies of 10.9% and 11.2% with an identical deep‐blue emission peak of 452 nm, which are the best TTA OLEDs with a Commission Internationale de l'Eclairage chromaticity Y coordinate below 0.15. Theoretical and experimental results demonstrate that the TTA process can be improved owing to the efficient spin–orbit interactions, even though the energy levels of the triplet pairs are higher than the calculated second triplet excited states.
科研通智能强力驱动
Strongly Powered by AbleSci AI