Magnesiothermic Reduction of Silica: A Machine Learning Study

过度拟合 还原(数学) 材料科学 芯(光纤) 航程(航空) 计算机科学 高斯过程 高斯分布 机器学习 数学 物理 复合材料 人工神经网络 几何学 量子力学
作者
Kai Tang,Azam Rasouli,Jafar Safarian,Xiang Ma,Gabriella Tranell
出处
期刊:Materials [MDPI AG]
卷期号:16 (11): 4098-4098 被引量:4
标识
DOI:10.3390/ma16114098
摘要

Fundamental studies have been carried out experimentally and theoretically on the magnesiothermic reduction of silica with different Mg/SiO2 molar ratios (1-4) in the temperature range of 1073 to 1373 K with different reaction times (10-240 min). Due to the kinetic barriers occurring in metallothermic reductions, the equilibrium relations calculated by the well-known thermochemical software FactSage (version 8.2) and its databanks are not adequate to describe the experimental observations. The unreacted silica core encapsulated by the reduction products can be found in some parts of laboratory samples. However, other parts of samples show that the metallothermic reduction disappears almost completely. Some quartz particles are broken into fine pieces and form many tiny cracks. Magnesium reactants are able to infiltrate the core of silica particles via tiny fracture pathways, thereby enabling the reaction to occur almost completely. The traditional unreacted core model is thus inadequate to represent such complicated reaction schemes. In the present work, an attempt is made to apply a machine learning approach using hybrid datasets in order to describe complex magnesiothermic reductions. In addition to the experimental laboratory data, equilibrium relations calculated by the thermochemical database are also introduced as boundary conditions for the magnesiothermic reductions, assuming a sufficiently long reaction time. The physics-informed Gaussian process machine (GPM) is then developed and used to describe hybrid data, given its advantages when describing small datasets. A composite kernel for the GPM is specifically developed to mitigate the overfitting problems commonly encountered when using generic kernels. Training the physics-informed Gaussian process machine (GPM) with the hybrid dataset results in a regression score of 0.9665. The trained GPM is thus used to predict the effects of Mg-SiO2 mixtures, temperatures, and reaction times on the products of a magnesiothermic reduction, that have not been covered by experiments. Additional experimental validation indicates that the GPM works well for the interpolates of the observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cchi完成签到,获得积分10
刚刚
奶盐牙牙乐完成签到 ,获得积分10
刚刚
1秒前
苗条的善斓完成签到,获得积分10
1秒前
酷波er应助周杰伦采纳,获得30
1秒前
快乐的晟睿完成签到,获得积分10
1秒前
1秒前
端庄的火龙果完成签到,获得积分10
2秒前
诸葛小哥哥完成签到 ,获得积分10
2秒前
完美世界应助典雅的如南采纳,获得10
2秒前
ding应助科研八戒采纳,获得10
2秒前
搞怪的千万完成签到,获得积分10
2秒前
科研通AI5应助溪泉采纳,获得10
2秒前
早睡早起发布了新的文献求助10
2秒前
3秒前
吴五五发布了新的文献求助10
3秒前
加鲁鲁发布了新的文献求助10
3秒前
4秒前
九点半上课了完成签到,获得积分10
4秒前
隐形曼青应助mxy采纳,获得10
4秒前
4秒前
4秒前
5秒前
Bliss发布了新的文献求助10
5秒前
风中梦蕊完成签到 ,获得积分10
5秒前
6秒前
007完成签到,获得积分10
6秒前
Agernon应助研究啥采纳,获得10
6秒前
Gang完成签到,获得积分10
6秒前
三叶草完成签到,获得积分10
6秒前
木子完成签到 ,获得积分10
7秒前
安静夏青完成签到,获得积分10
7秒前
小桑桑完成签到,获得积分10
7秒前
fangyuan完成签到,获得积分10
8秒前
格纹完成签到,获得积分10
8秒前
要减肥冰菱完成签到 ,获得积分10
8秒前
李爱国应助又见三皮采纳,获得10
8秒前
领导范儿应助蜗牛撵大象采纳,获得10
8秒前
脈打完成签到,获得积分10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Modern nutrition in health and disease 10th ed 1000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550789
求助须知:如何正确求助?哪些是违规求助? 3127132
关于积分的说明 9372437
捐赠科研通 2826256
什么是DOI,文献DOI怎么找? 1553641
邀请新用户注册赠送积分活动 725007
科研通“疑难数据库(出版商)”最低求助积分说明 714516