The formal rationality of artificial intelligence-based algorithms and the problem of bias

理性 有限理性 计算机科学 人工智能 背景(考古学) 生态理性 计算智能 机器学习 管理科学 数据科学 认识论 经济 古生物学 哲学 生物
作者
Rohit Nishant,Dirk Schneckenberg,M. N. Ravishankar
出处
期刊:Journal of Information Technology [SAGE]
卷期号:39 (1): 19-40 被引量:18
标识
DOI:10.1177/02683962231176842
摘要

This paper presents a new perspective on the problem of bias in artificial intelligence (AI)-driven decision-making by examining the fundamental difference between AI and human rationality in making sense of data. Current research has focused primarily on software engineers’ bounded rationality and bias in the data fed to algorithms but has neglected the crucial role of algorithmic rationality in producing bias. Using a Weberian distinction between formal and substantive rationality, we inquire why AI-based algorithms lack the ability to display common sense in data interpretation, leading to flawed decisions. We first conduct a rigorous text analysis to uncover and exemplify contextual nuances within the sampled data. We then combine unsupervised and supervised learning, revealing that algorithmic decision-making characterizes and judges data categories mechanically as it operates through the formal rationality of mathematical optimization procedures. Next, using an AI tool, we demonstrate how formal rationality embedded in AI-based algorithms limits its capacity to perform adequately in complex contexts, thus leading to bias and poor decisions. Finally, we delineate the boundary conditions and limitations of leveraging formal rationality to automatize algorithmic decision-making. Our study provides a deeper understanding of the rationality-based causes of AI’s role in bias and poor decisions, even when data is generated in a largely bias-free context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
2秒前
zhangzhi发布了新的文献求助10
2秒前
花花完成签到,获得积分20
3秒前
seedling发布了新的文献求助10
3秒前
4秒前
4秒前
秘书发布了新的文献求助10
4秒前
gaiaaxy发布了新的文献求助10
5秒前
花凉完成签到,获得积分10
5秒前
慕青应助玖月采纳,获得10
6秒前
lilith发布了新的文献求助10
6秒前
花凉发布了新的文献求助10
8秒前
8秒前
聚甲烯吡络烷酮完成签到 ,获得积分10
9秒前
卡皮巴拉发布了新的文献求助10
10秒前
王秋婷发布了新的文献求助10
10秒前
叶绿体机智完成签到,获得积分10
12秒前
shelly发布了新的文献求助10
13秒前
14秒前
16秒前
小二郎应助naonao采纳,获得10
16秒前
YWang完成签到,获得积分10
17秒前
胡图图完成签到,获得积分10
21秒前
咩咩咩发布了新的文献求助10
21秒前
汉堡包应助大力沛萍采纳,获得10
22秒前
今后应助Zz采纳,获得10
22秒前
23秒前
24秒前
24秒前
研友_nxw2xL发布了新的文献求助10
24秒前
lc发布了新的文献求助10
26秒前
27秒前
小刘一定能读C9博完成签到 ,获得积分10
27秒前
27秒前
27秒前
28秒前
平常的G完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605