Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis

免疫系统 脂质代谢 鉴定(生物学) 免疫学 计算生物学 医学 生物 生物信息学 生物化学 植物
作者
Hang Chen,Biao Wu,Kun‐Liang Guan,Liang Chen,Kevin Chai,Ming Ying,Dazhi Li,Weicheng Zhao
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fimmu.2025.1549150
摘要

Background Atherosclerosis is a significant contributor to cardiovascular disease, and conventional diagnostic methods frequently fall short in the timely and accurate detection of early-stage atherosclerosis. Abnormal lipid metabolism plays a critical role in the development of atherosclerosis. Consequently, the identification of new diagnostic markers is essential for the precise diagnosis of this condition. Method The datasets related to atherosclerosis utilized in this research were obtained from the GEO database (GSE2470, GSE24495, GSE100927 and GSE43292). The ssGSEA technique was first utilized to assess lipid metabolism scores in samples affected by atherosclerosis, thereby aiding in the discovery of important regulatory genes linked to lipid metabolism via WGCNA. Following this, differential expression analysis and functional evaluations were carried out, after which various machine learning approaches were employed to determine significant diagnostic genes for atherosclerosis. A diagnostic model was then developed and validated through several machine learning algorithms. Furthermore, molecular docking studies were conducted to analyze the binding affinity of these key markers with therapeutic agents for atherosclerosis. The ssGSEA technique was also used to measure immune cell scores in atherosclerotic samples, aiding the exploration of the connection between key diagnostic markers and immune cells. Finally, the expression variations of the identified pivotal genes were confirmed through experimental validation. Result WGCNA identified 302 lipid metabolism-related genes in atherosclerotic samples, and functional analysis revealed that these genes are associated with multiple immune pathways. Through further differential analysis and screening using machine learning algorithms, APLNR, PCDH12, PODXL, SLC40A1, TM4SF18, and TNFRSF25 were identified as key diagnostic genes for atherosclerosis. The diagnostic model we constructed was confirmed to predict the occurrence of atherosclerosis with high accuracy, and molecular docking studies indicated that these six key diagnostic genes have potential as drug targets. Additionally, the ssGSEA algorithm further validated the association of these diagnostic genes with various immune cells. Finally, the expression levels of these six genes were experimentally confirmed. Conclusion Our study introduces novel lipid metabolism-related diagnostic markers for atherosclerosis and emphasizes their potential as immune-related drug targets. This research provides a valuable approach for the predictive diagnosis and targeted therapy of atherosclerosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
钱多多完成签到,获得积分10
1秒前
wyx关闭了wyx文献求助
1秒前
葛蓉完成签到,获得积分20
1秒前
隐形曼青应助chenzhengshan采纳,获得10
2秒前
寒风完成签到,获得积分10
2秒前
田様应助miemouwu采纳,获得10
2秒前
23完成签到,获得积分10
2秒前
郦乞发布了新的文献求助10
3秒前
英俊的铭应助smiling采纳,获得10
3秒前
4秒前
Lucas应助duotianzhiyi采纳,获得10
4秒前
激昂的薯片完成签到,获得积分10
5秒前
5秒前
葛蓉发布了新的文献求助10
5秒前
cgh完成签到,获得积分10
6秒前
zhangshan完成签到,获得积分10
6秒前
7秒前
哈哈哈完成签到,获得积分10
7秒前
10秒前
12秒前
13秒前
恢复出厂设置完成签到,获得积分10
14秒前
14秒前
14秒前
赘婿应助Mas采纳,获得10
16秒前
132316完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
充电宝应助王的发采纳,获得10
19秒前
rnmlp发布了新的文献求助10
19秒前
雅欣发布了新的文献求助10
19秒前
搞怪绿柳发布了新的文献求助10
21秒前
超级柜子发布了新的文献求助10
21秒前
努努酱完成签到 ,获得积分10
21秒前
23秒前
小小百完成签到 ,获得积分10
24秒前
三余关注了科研通微信公众号
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560035
求助须知:如何正确求助?哪些是违规求助? 3134333
关于积分的说明 9406892
捐赠科研通 2834456
什么是DOI,文献DOI怎么找? 1558136
邀请新用户注册赠送积分活动 727884
科研通“疑难数据库(出版商)”最低求助积分说明 716531