Determining Exciton Diffusion Length in Organic Semiconductors: Unifying Macro‐ and Microscopic Perspectives

材料科学 激子 扩散 有机半导体 半导体 化学物理 纳米技术 工程物理 凝聚态物理 热力学 光电子学 物理 计算机科学 程序设计语言
作者
Wenchao Yang,Catherine S. P. De Castro,Safakath Karuthedath,Yuliar Firdaus,Nisreen Alshehri,Si Chen,Diego Rosas Villalva,Christopher E. Petoukhoff,A.S. Dahman,Derya Baran,Thomas D. Anthopoulos,Frédéric Laquai,Julien Gorenflot
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202405322
摘要

Abstract Long exciton diffusion length ( L D ) is key to maximizing excitation harvesting in organic solar cells, but contradicting values are reported for non‐fullerene acceptors (NFA). To understand the factors enabling large L D , experimental observation of exciton decay by transient absorption spectroscopy (TAS) is combined with microscopic Kinetic Monte Carlo (KMC) simulations on 4 ITIC derivatives. Exciton decays are fitted considering singlet exciton‐singlet exciton annihilation (SSA) and the intrinsic exciton's lifetime τ , resulting in L D from 20 to 70 nm. The critical importance of an independent estimate of τ is discussed and its measurements from pristine NFA films is found to be more relevant than from NFA molecules embedded in an inert polystyrene matrix. From experimental parameters, the microscopic Förster Resonant Energy Transfer hopping rate and the annihilation rate in a cubic lattice are determined, considering a Gaussian energetic disorder. KMC simulation of those rates are able to reproduce the experimental transients and L D , provided a lattice constant a close to the molecular π‐π stacking distance is used. It is found that this tight packing and a low disorder are critical to reach large L D , and empirically relate linearly such that 40 meV more disorder can be compensated by 1 Angstrom tighter packing (shorter a ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hys完成签到,获得积分10
刚刚
陈洁完成签到,获得积分20
刚刚
1秒前
科研通AI5应助四憙采纳,获得30
1秒前
2秒前
迅速以蓝应助CYL07采纳,获得10
2秒前
赘婿应助accept采纳,获得10
3秒前
顺利毕业完成签到,获得积分10
3秒前
4秒前
4秒前
文竹发布了新的文献求助10
4秒前
jiap1120发布了新的文献求助10
5秒前
66ds发布了新的文献求助10
6秒前
爱躺的菜鸟完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
风中听枫发布了新的文献求助10
8秒前
8秒前
9秒前
accept完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助暗香采纳,获得20
11秒前
浦肯野应助深情元蝶采纳,获得80
11秒前
CipherSage应助深情元蝶采纳,获得10
11秒前
123完成签到,获得积分10
12秒前
Endymion发布了新的文献求助10
12秒前
00发布了新的文献求助10
12秒前
xi发布了新的文献求助10
13秒前
13秒前
pluto应助简单的期待采纳,获得30
14秒前
大模型应助xuxuxu采纳,获得10
14秒前
文竹完成签到,获得积分10
15秒前
16秒前
李健的小迷弟应助jiap1120采纳,获得10
17秒前
面条完成签到,获得积分10
18秒前
wanci应助Endymion采纳,获得10
18秒前
20秒前
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204