Enhancing the Predictive Performance of Molecularly Imprinted Polymer-Based Electrochemical Sensors Using a Stacking Regressor Ensemble of Machine Learning Models

分子印迹聚合物 堆积 材料科学 聚合物 集成学习 计算机科学 纳米技术 人工智能 复合材料 化学 有机化学 选择性 催化作用
作者
Reza Mohammadi Dashtaki,Saeed Mohammadi Dashtaki,Esmaeil Heydari‐Bafrooei,Md. Jalil Piran
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.5c00364
摘要

The performance of electrochemical sensors is influenced by various factors. To enhance the effectiveness of these sensors, it is crucial to find the right balance among these factors. Researchers and engineers continually explore innovative approaches to enhance sensitivity, selectivity, and reliability. Machine learning (ML) techniques facilitate the analysis and predictive modeling of sensor performance by establishing quantitative relationships between parameters and their effects. This work presents a case study on developing a molecularly imprinted polymer (MIP)-based sensor for detecting doxorubicin (Dox), emphasizing the use of ML-based ensemble models to improve performance and reliability. Four ML models, including Decision Tree (DT), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and K-Nearest Neighbors (KNN), are used to evaluate the effect of each parameter on prediction performance, using the SHapley Additive exPlanations (SHAP) method to determine feature importance. Based on the analysis, removing a less influential feature and introducing a new feature significantly improved the model's predictive capabilities. By applying the min-max scaling technique, it is ensured that all features contribute proportionally to the model learning process. Additionally, multiple ML models─Linear Regression (LR), KNN, DT, RF, Adaptive Boosting (AdaBoost), Gradient Boosting (GB), Support Vector Regression (SVR), XGBoost, Bagging, Partial Least Squares (PLS), and Ridge Regression─are applied to the data set and their performance in predicting the sensor output current is compared. To further enhance prediction performance, a novel ensemble model is proposed that integrates DT, RF, GB, XGBoost, and Bagging regressors, leveraging their combined strengths to offset individual weaknesses. The main benefit of this work lies in its ability to enhance MIP-based sensor performance by developing a novel stacking regressor ensemble model, which improves prediction performance and reliability. This methodology is broadly applicable to the development of other sensors with different transducers and sensing elements. Through extensive simulation results, the proposed stacking regressor ensemble model demonstrated superior predictive performance compared to individual ML models. The model achieved an R-squared (R2) of 0.993, significantly reducing the root-mean-square error (RMSE) to 0.436 and the mean absolute error (MAE) to 0.244. These improvements enhanced sensitivity and reliability of the MIP-based electrochemical sensor, demonstrating a substantial performance gain over individual ML models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzkh发布了新的文献求助10
刚刚
long发布了新的文献求助10
刚刚
1秒前
Vvvnnnaa1发布了新的文献求助10
1秒前
逢时。完成签到,获得积分10
1秒前
1秒前
菜鸟发布了新的文献求助10
2秒前
汉堡小屁发布了新的文献求助20
2秒前
2秒前
小马甲应助cxd采纳,获得10
2秒前
bkagyin应助啊娴子采纳,获得10
2秒前
3秒前
踏实的12发布了新的文献求助10
3秒前
科研通AI5应助kb采纳,获得10
3秒前
方远锋完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助樂酉采纳,获得10
4秒前
冲冲小将完成签到,获得积分10
4秒前
陈增飞发布了新的文献求助10
5秒前
何小抽完成签到,获得积分20
5秒前
天天快乐应助跳跃的水蓝采纳,获得10
5秒前
晨屿发布了新的文献求助10
6秒前
踏实无敌应助晓生采纳,获得10
6秒前
赘婿应助无限的依波采纳,获得10
6秒前
6秒前
科研通AI5应助赵鹏彦采纳,获得10
7秒前
wangjq发布了新的文献求助10
7秒前
7秒前
科研通AI5应助美好钻石采纳,获得10
8秒前
漾漾的羊完成签到,获得积分10
8秒前
酷酷珠发布了新的文献求助10
8秒前
8秒前
李爱国应助开心小霸王采纳,获得10
9秒前
9秒前
搜集达人应助牛大壮采纳,获得10
10秒前
Jasper应助long采纳,获得30
11秒前
顺利完成签到,获得积分10
11秒前
充电宝应助菜鸟采纳,获得10
11秒前
11秒前
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747956
求助须知:如何正确求助?哪些是违规求助? 3290798
关于积分的说明 10070954
捐赠科研通 3006696
什么是DOI,文献DOI怎么找? 1651241
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751627