阴极
共价键
化学
纳米技术
组合化学
材料科学
有机化学
物理化学
作者
Zhiwei Zhao,Di Liu,Yang Wang
摘要
The urgent demand for sustainable energy storage solutions has positioned covalent organic frameworks (COFs) as promising alternatives to conventional inorganic cathodes. With their programmable architectures, high theoretical capacities, and elemental sustainability, COFs hold transformative potential for next-generation energy storage devices. Despite their promise, the practical implementation of COFs has been impeded by limitations such as low conductivity and lower-than-anticipated practical capacities. This review explores recent advances in molecular and structural engineering strategies designed to overcome these challenges. The discussion encompasses ion-storage mechanisms, innovative chemical design strategies, and composite material synergies that enhance the performance of COF cathodes (COFCs). Looking to the future, breakthroughs in multi-electron redox chemistry, scalable synthesis, and advances in in situ characterization techniques will be critical to unlocking the full potential of COFCs. This review aims to provide valuable insights and guidance for the design of novel COFC materials, thereby advancing the development of next-generation high-performance secondary batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI