亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating Erratic Measurement Errors in Network-Wide Traffic Flow via Virtual Balance Sensors

平衡(能力) 流量(计算机网络) 流量网络 计算机科学 运输工程 流量(数学) 观测误差 模拟 工程类 实时计算 计量经济学 数学优化 计算机网络 数学 医学 几何学 物理医学与康复
作者
Zhenjie Zheng,Zhengli Wang,Hao Fu,Wei Ma
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0493
摘要

Large-scale traffic flow data are collected by numerous sensors for managing and operating transport systems. However, various measurement errors exist in the sensor data and their distributions or structures are usually not known in the real world, which diminishes the reliability of the collected data and impairs the performance of smart mobility applications. Such irregular error is referred to as the erratic measurement error and has not been well investigated in existing studies. In this research, we propose to estimate the erratic measurement errors in networked traffic flow data. Different from existing studies that mainly focus on measurement errors with known distributions or structures, we allow the distributions and structures of measurement errors to be unknown except that measurement errors occur based on a Poisson process. By exploiting the flow balance law, we first introduce the concept of virtual balance sensors and develop a mixed integer nonlinear programming model to simultaneously estimate sensor error probabilities and recover traffic flow. Under suitable assumptions, the complex integrated problem can be equivalently viewed as an estimate-then-optimize problem: first, estimation using machine learning (ML) methods, and then optimization with mathematical programming. When the assumptions fail in more realistic scenarios, we further develop a smart estimate-then-optimize (SEO) framework that embeds the optimization model into ML training loops to solve the problem. Compared with the two-stage method, the SEO framework ensures that the optimization process can recognize and compensate for inaccurate estimations caused by ML methods, which can produce more reliable results. Finally, we conduct numerical experiments using both synthetic and real-world examples under various scenarios. Results demonstrate the effectiveness of our decomposition approach and the superiority of the SEO framework. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods for Urban Mobility. Funding: The work described in this paper was supported by the National Natural Science Foundation of China [Grant Project No. 72288101, 72101012, 72301023] and a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Grant Project No. PolyU/15206322]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0493 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尧思瑶发布了新的文献求助10
2秒前
man完成签到 ,获得积分10
11秒前
雨说完成签到 ,获得积分10
22秒前
27秒前
尧思瑶完成签到,获得积分10
40秒前
55秒前
56秒前
王摸鱼发布了新的文献求助10
1分钟前
1分钟前
Yesaniar完成签到,获得积分10
1分钟前
1分钟前
易义德发布了新的文献求助10
1分钟前
Yesaniar发布了新的文献求助30
1分钟前
Albert完成签到,获得积分10
1分钟前
zqlxueli完成签到 ,获得积分10
1分钟前
1分钟前
桓某人发布了新的文献求助10
1分钟前
1分钟前
情怀应助Yesaniar采纳,获得10
1分钟前
1分钟前
田様应助陶陶陶采纳,获得10
1分钟前
2分钟前
顾矜应助Yesaniar采纳,获得10
2分钟前
2分钟前
Costing完成签到 ,获得积分10
2分钟前
2分钟前
研友_VZG7GZ应助士艳采纳,获得10
2分钟前
LucienS发布了新的文献求助10
2分钟前
2分钟前
士艳发布了新的文献求助10
2分钟前
2分钟前
2分钟前
士艳完成签到,获得积分10
2分钟前
小蘑菇应助Aloha采纳,获得10
3分钟前
我是老大应助小船采纳,获得10
3分钟前
3分钟前
Aloha发布了新的文献求助10
3分钟前
Aloha完成签到,获得积分20
3分钟前
万能图书馆应助斯文问芙采纳,获得10
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526522
求助须知:如何正确求助?哪些是违规求助? 3106959
关于积分的说明 9281959
捐赠科研通 2804471
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709579