Estimating Erratic Measurement Errors in Network-Wide Traffic Flow via Virtual Balance Sensors

平衡(能力) 流量(计算机网络) 流量网络 计算机科学 运输工程 流量(数学) 观测误差 模拟 工程类 实时计算 计量经济学 数学优化 计算机网络 数学 医学 几何学 物理医学与康复
作者
Zhenjie Zheng,Zhengli Wang,Hao Fu,Wei Ma
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0493
摘要

Large-scale traffic flow data are collected by numerous sensors for managing and operating transport systems. However, various measurement errors exist in the sensor data and their distributions or structures are usually not known in the real world, which diminishes the reliability of the collected data and impairs the performance of smart mobility applications. Such irregular error is referred to as the erratic measurement error and has not been well investigated in existing studies. In this research, we propose to estimate the erratic measurement errors in networked traffic flow data. Different from existing studies that mainly focus on measurement errors with known distributions or structures, we allow the distributions and structures of measurement errors to be unknown except that measurement errors occur based on a Poisson process. By exploiting the flow balance law, we first introduce the concept of virtual balance sensors and develop a mixed integer nonlinear programming model to simultaneously estimate sensor error probabilities and recover traffic flow. Under suitable assumptions, the complex integrated problem can be equivalently viewed as an estimate-then-optimize problem: first, estimation using machine learning (ML) methods, and then optimization with mathematical programming. When the assumptions fail in more realistic scenarios, we further develop a smart estimate-then-optimize (SEO) framework that embeds the optimization model into ML training loops to solve the problem. Compared with the two-stage method, the SEO framework ensures that the optimization process can recognize and compensate for inaccurate estimations caused by ML methods, which can produce more reliable results. Finally, we conduct numerical experiments using both synthetic and real-world examples under various scenarios. Results demonstrate the effectiveness of our decomposition approach and the superiority of the SEO framework. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods for Urban Mobility. Funding: The work described in this paper was supported by the National Natural Science Foundation of China [Grant Project No. 72288101, 72101012, 72301023] and a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Grant Project No. PolyU/15206322]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0493 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
平生完成签到 ,获得积分10
1秒前
赘婿应助七月采纳,获得10
3秒前
77发布了新的文献求助10
5秒前
LY发布了新的文献求助10
5秒前
坚强的雁蓉完成签到 ,获得积分10
7秒前
与我月初发布了新的文献求助10
7秒前
Hello应助perfumei采纳,获得10
7秒前
css1997完成签到 ,获得积分10
7秒前
Rondab应助琪凯定理采纳,获得10
8秒前
烟花应助闪闪灯泡采纳,获得10
8秒前
飞快的平彤完成签到,获得积分10
9秒前
12秒前
CodeCraft应助shinn采纳,获得10
14秒前
77完成签到,获得积分10
14秒前
Rabbit完成签到 ,获得积分10
14秒前
机灵的啤酒完成签到 ,获得积分10
15秒前
顾矜应助小姜采纳,获得10
18秒前
芝士发布了新的文献求助30
18秒前
与我月初完成签到,获得积分10
19秒前
19秒前
顾矜应助曾云璐采纳,获得10
20秒前
tttt完成签到 ,获得积分10
23秒前
24秒前
温暖的萤完成签到,获得积分20
25秒前
25秒前
26秒前
26秒前
chen完成签到,获得积分10
27秒前
28秒前
shinn发布了新的文献求助10
31秒前
31秒前
awen发布了新的文献求助10
33秒前
orixero应助清修采纳,获得10
36秒前
李健的小迷弟应助麻师长采纳,获得10
38秒前
39秒前
科研通AI2S应助美满棉花糖采纳,获得10
41秒前
SMHILU完成签到,获得积分20
42秒前
辉辉完成签到,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602