亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating Erratic Measurement Errors in Network-Wide Traffic Flow via Virtual Balance Sensors

平衡(能力) 流量(计算机网络) 流量网络 计算机科学 运输工程 流量(数学) 观测误差 模拟 工程类 实时计算 计量经济学 数学优化 计算机网络 数学 医学 几何学 物理医学与康复
作者
Zhenjie Zheng,Zhengli Wang,Hao Fu,Wei Ma
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2023.0493
摘要

Large-scale traffic flow data are collected by numerous sensors for managing and operating transport systems. However, various measurement errors exist in the sensor data and their distributions or structures are usually not known in the real world, which diminishes the reliability of the collected data and impairs the performance of smart mobility applications. Such irregular error is referred to as the erratic measurement error and has not been well investigated in existing studies. In this research, we propose to estimate the erratic measurement errors in networked traffic flow data. Different from existing studies that mainly focus on measurement errors with known distributions or structures, we allow the distributions and structures of measurement errors to be unknown except that measurement errors occur based on a Poisson process. By exploiting the flow balance law, we first introduce the concept of virtual balance sensors and develop a mixed integer nonlinear programming model to simultaneously estimate sensor error probabilities and recover traffic flow. Under suitable assumptions, the complex integrated problem can be equivalently viewed as an estimate-then-optimize problem: first, estimation using machine learning (ML) methods, and then optimization with mathematical programming. When the assumptions fail in more realistic scenarios, we further develop a smart estimate-then-optimize (SEO) framework that embeds the optimization model into ML training loops to solve the problem. Compared with the two-stage method, the SEO framework ensures that the optimization process can recognize and compensate for inaccurate estimations caused by ML methods, which can produce more reliable results. Finally, we conduct numerical experiments using both synthetic and real-world examples under various scenarios. Results demonstrate the effectiveness of our decomposition approach and the superiority of the SEO framework. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods for Urban Mobility. Funding: The work described in this paper was supported by the National Natural Science Foundation of China [Grant Project No. 72288101, 72101012, 72301023] and a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Grant Project No. PolyU/15206322]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.0493 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子e发布了新的文献求助10
1秒前
oaf完成签到 ,获得积分10
5秒前
爆米花应助啵子采纳,获得10
6秒前
手帕很忙完成签到,获得积分10
6秒前
山川日月完成签到,获得积分10
14秒前
酒渡完成签到,获得积分10
20秒前
orixero应助清爽冬莲采纳,获得100
25秒前
科研通AI6.1应助刘润泽采纳,获得10
31秒前
午盏完成签到,获得积分10
32秒前
32秒前
meow发布了新的文献求助10
35秒前
科研力力发布了新的文献求助10
39秒前
酷波er应助鱼蛋采纳,获得30
45秒前
asdf完成签到 ,获得积分10
47秒前
49秒前
Kz发布了新的文献求助10
51秒前
illuminate完成签到 ,获得积分10
52秒前
蓝胖子完成签到 ,获得积分10
54秒前
心灵美猎豹完成签到,获得积分20
56秒前
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
临子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
wangwangwang完成签到,获得积分10
1分钟前
英姑应助活力天蓝采纳,获得30
1分钟前
年年年年发布了新的文献求助10
1分钟前
无心的善愁完成签到 ,获得积分10
1分钟前
冷酷愚志完成签到,获得积分10
1分钟前
李健应助年年年年采纳,获得10
1分钟前
许伟洋完成签到 ,获得积分10
1分钟前
汉堡包应助怕孤单的石头采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779750
求助须知:如何正确求助?哪些是违规求助? 5649480
关于积分的说明 15452248
捐赠科研通 4910842
什么是DOI,文献DOI怎么找? 2642978
邀请新用户注册赠送积分活动 1590629
关于科研通互助平台的介绍 1545067