Online test-time adaptation for better generalization of interatomic potentials to out-of-distribution data

一般化 适应(眼睛) 计算机科学 分布(数学) 统计物理学 生物 物理 数学 神经科学 数学分析
作者
Taoyong Cui,Chenyu Tang,Dongzhan Zhou,Yuqiang Li,Xin-Gao Gong,Wanli Ouyang,Mao Su,Shufei Zhang
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-57101-4
摘要

Machine learning interatomic potentials (MLIPs) enable more efficient molecular dynamics (MD) simulations with ab initio accuracy, which have been used in various domains of physical science. However, distribution shift between training and test data causes deterioration of the test performance of MLIPs, and even leads to collapse of MD simulations. In this work, we propose an online Test-time Adaptation Interatomic Potential (TAIP) framework to improve the generalization on test data. Specifically, we design a dual-level self-supervised learning approach that leverages global structure and atomic local environment information to align the model with the test data. Extensive experiments demonstrate TAIP's capability to bridge the domain gap between training and test dataset without additional data. TAIP enhances the test performance on various benchmarks, from small molecule datasets to complex periodic molecular systems with various types of elements. TAIP also enables stable MD simulations where the corresponding baseline models collapse. Molecular dynamics simulations using machine learning interatomic potentials often face stability issues due to distribution shifts. Here, the authors develop an online test-time adaptation framework to improve generalization, allowing for more stable simulations without the need for additional training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助wmm采纳,获得10
1秒前
NexusExplorer应助小夜采纳,获得10
1秒前
大白天完成签到,获得积分10
1秒前
CC发布了新的文献求助10
1秒前
简默完成签到,获得积分10
1秒前
TTw发布了新的文献求助10
2秒前
皮蛋_WH发布了新的文献求助10
3秒前
Preseverance完成签到,获得积分10
4秒前
4秒前
桐桐应助六清采纳,获得10
4秒前
5秒前
Hello应助宋赛创采纳,获得10
5秒前
5秒前
6秒前
GFY完成签到,获得积分10
6秒前
7秒前
8秒前
9秒前
9秒前
麦瑞发布了新的文献求助10
9秒前
gonna完成签到,获得积分10
10秒前
所所应助执着的觅露采纳,获得10
10秒前
田様应助温柔发卡采纳,获得10
10秒前
大个应助9sun采纳,获得10
11秒前
阿郑发布了新的文献求助10
11秒前
隐形曼青应助可靠豌豆采纳,获得30
11秒前
酷波er应助赵伟豪采纳,获得10
12秒前
芋圆发布了新的文献求助10
13秒前
科研通AI2S应助大人采纳,获得10
14秒前
钱罐罐发布了新的文献求助10
15秒前
17秒前
小乐儿~完成签到,获得积分10
17秒前
17秒前
wanci应助xingfangshu采纳,获得10
17秒前
香蕉觅云应助xingfangshu采纳,获得10
18秒前
687完成签到,获得积分10
21秒前
领导范儿应助Yeshenyue采纳,获得10
22秒前
wifi发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500