氧化还原
法拉第效率
材料科学
阴极
电化学
过渡金属
过电位
氧化物
氧气
钴
析氧
电子转移
无机化学
电极
物理化学
化学
冶金
催化作用
有机化学
生物化学
作者
Hayeon Lee,Minji Kim,Hyunyoung Park,Yiseul Yoo,Sangmun Na,Hee‐Dae Lim,Jongsoon Kim,Won‐Sub Yoon
标识
DOI:10.1002/adfm.202312401
摘要
Abstract Developing sustainable Li‐ion batteries requires high‐energy cathodes based on low‐cost, earth‐abundant elements, moving away from low‐reserve nickel and cobalt. Fe‐based oxide cathodes with Fe 3+/4+ and O 2−/n− redox couples offer potential but face low initial Coulombic efficiency and significant voltage hysteresis. This study investigates Li‐excess Fe‐based disordered rock‐salt (DRX) oxyfluorides (Li 2 Fe 0.5 M 0.5 O 2 F; M = Fe, Ti, Mn) using combined electrochemical/spectroscopic characterization and first‐principles calculation. Oxygen‐dependent Fe 3+/4+ redox, related to Fe 3d–O 2p hybrid state, can be stabilized when combined with Mn 3+/4+ redox in DRX structure owing to the unusual decrease in its redox potential. The moderately high charge transfer gap stabilizes Fe 4+ against ligand‐to‐metal charge transfer (LMCT) on charge, reduces the amount of oxygen oxidation, thereby increasing Coulombic efficiency. On discharge, it allows metal‐to‐ligand charge transfer (MLCT) without substantial overpotential, reducing hysteresis in oxygen redox. The resulting composition exhibits high capacity (309 mAh g −1 ) and energy density (998 Wh kg −1 ), providing insights for next‐generation Ni‐ and Co‐free cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI