Attention in Attention for Hyperspectral With High Spatial Resolution (H) Image Classification

高光谱成像 图像分辨率 遥感 上下文图像分类 计算机科学 人工智能 模式识别(心理学) 计算机视觉 图像(数学) 环境科学 地质学
作者
Ge Tang,Xinyu Wang,Hengwei Zhao,Xin Hu,Guang Jin,Yanfei Zhong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:1
标识
DOI:10.1109/tgrs.2023.3340175
摘要

An inevitable trend of hyperspectral remote sensing has been toward hyperspectral with high spatial resolution (H2) images. However, the higher resolution also brings higher spatial/spectral heterogeneity of surface features, which increases the difficulty of fine classification. Fully using global spatial–spectral features and contextual information is an effective method to alleviate spatial/spectral heterogeneity. Recently, to extract global spatial–spectral features with long-range dependencies, the self-attention mechanism has been widely used in H2 image classification and has achieved excellent results. As is well known, the simultaneous use of spatial and spectral information has always been a key aspect of hyperspectral image (HSI) processing; however, the current spatial and spectral attention modules only focus on the spatial and spectral features separately. This prevents further improvement in network performance, especially when the sample size is small. Therefore, a spatial–spectral attention-in-attention network (S2AiANet) is proposed, which solves the problem of the current spatial–spectral attention maps only focusing on single features through the spatial–spectral attention-in-attention (S2AiA) module. In addition, a multiscale attention (MSA) module is proposed to enhance the network's adaptability to various complex scenarios. The experiments on two H2 datasets and one classic HSI dataset demonstrate that S2AiANet can achieve a significant performance improvement compared with the state-of-the-art hyperspectral classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助淡定小蜜蜂采纳,获得10
刚刚
铃兰完成签到,获得积分10
刚刚
Lysine发布了新的文献求助30
1秒前
安走天完成签到,获得积分10
1秒前
潘果果完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
小宝爸爸发布了新的文献求助10
4秒前
xuxuxu完成签到,获得积分10
6秒前
xiaojia完成签到,获得积分10
7秒前
Yasing完成签到,获得积分10
7秒前
咸粥完成签到,获得积分20
7秒前
Webridging完成签到,获得积分10
7秒前
woobinhua发布了新的文献求助10
7秒前
wsysweet发布了新的文献求助10
8秒前
可爱的函函应助wddhy采纳,获得10
8秒前
zzz发布了新的文献求助10
8秒前
研友_VZG7GZ应助鲜艳的芝麻采纳,获得10
8秒前
小奋斗完成签到,获得积分10
9秒前
9秒前
9秒前
研友_RLNGMn发布了新的文献求助10
10秒前
传奇3应助Juan采纳,获得10
10秒前
CodeCraft应助崔小好采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
缓慢的觅云应助咸粥采纳,获得20
11秒前
ice7应助舒服的笑旋采纳,获得10
11秒前
自由的凛发布了新的文献求助10
11秒前
12秒前
积极书双发布了新的文献求助10
12秒前
12秒前
英姑应助hebilie采纳,获得10
12秒前
xiaowang发布了新的文献求助20
13秒前
13秒前
吖吖草完成签到,获得积分10
13秒前
丘比特应助1234567xjy采纳,获得10
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038