Machine learning-based prediction for settling velocity of microplastics with various shapes

微塑料 沉淀 无量纲量 终端速度 形状因子 机械 生物系统 数学 环境科学 几何学 物理 环境工程 地质学 生物 海洋学
作者
Shangtuo Qian,Xuyang Qiao,Wenming Zhang,Zijian Yu,Shunan Dong,Jiangang Feng
出处
期刊:Water Research [Elsevier]
卷期号:249: 121001-121001 被引量:23
标识
DOI:10.1016/j.watres.2023.121001
摘要

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
tian完成签到,获得积分10
1秒前
七七发布了新的文献求助30
2秒前
3秒前
待烟散尽云起时完成签到,获得积分10
3秒前
斯文以蓝发布了新的文献求助10
3秒前
kumarr发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
搜集达人应助英勇的幻露采纳,获得80
5秒前
王梓萌发布了新的文献求助10
6秒前
科研通AI6应助风清扬采纳,获得10
6秒前
6秒前
7秒前
7秒前
云村村民完成签到,获得积分10
8秒前
ky一下发布了新的文献求助10
8秒前
喵喵完成签到 ,获得积分10
8秒前
8秒前
8秒前
顺心纸鹤发布了新的文献求助10
9秒前
9秒前
脑洞疼应助Richard采纳,获得10
9秒前
聂落雁完成签到,获得积分10
10秒前
Jonathan完成签到,获得积分10
10秒前
浮游应助秋风之墩采纳,获得10
10秒前
KeYang完成签到,获得积分10
11秒前
11秒前
11秒前
ysxl发布了新的文献求助10
12秒前
清秀青荷完成签到,获得积分10
12秒前
科研通AI6应助WYS采纳,获得50
12秒前
12秒前
科研通AI6应助xwxhbydmet采纳,获得10
13秒前
热心的送终完成签到 ,获得积分10
13秒前
thuuu完成签到,获得积分10
13秒前
子车谷波完成签到,获得积分10
13秒前
鳗鱼绿蝶发布了新的文献求助10
14秒前
zhucc发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244