Machine learning-based prediction for settling velocity of microplastics with various shapes

微塑料 沉淀 无量纲量 终端速度 形状因子 机械 生物系统 数学 环境科学 几何学 物理 环境工程 地质学 生物 海洋学
作者
Shangtuo Qian,Xuyang Qiao,Wenming Zhang,Zijian Yu,Shunan Dong,Jiangang Feng
出处
期刊:Water Research [Elsevier BV]
卷期号:249: 121001-121001 被引量:23
标识
DOI:10.1016/j.watres.2023.121001
摘要

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jim_hacker完成签到,获得积分10
刚刚
刚刚
科目三应助Hitacl采纳,获得10
刚刚
light发布了新的文献求助10
2秒前
zhang发布了新的文献求助10
3秒前
霍华淞发布了新的文献求助10
3秒前
3秒前
脑洞疼应助mmol采纳,获得10
3秒前
4秒前
4秒前
5秒前
浮游应助橙汁采纳,获得10
5秒前
领导范儿应助Yeee采纳,获得10
5秒前
6秒前
杨佳霖发布了新的文献求助10
6秒前
科研通AI6应助山川采纳,获得10
6秒前
Orange应助宝安采纳,获得10
7秒前
孔涛完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助50
8秒前
万能图书馆应助健忘白易采纳,获得50
8秒前
Khaos_0929发布了新的文献求助10
8秒前
愉快的语山应助火枪手采纳,获得10
8秒前
xiao完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
晓晨完成签到,获得积分10
8秒前
乐天完成签到,获得积分10
9秒前
9秒前
EVAN完成签到,获得积分10
9秒前
姜鸽发布了新的文献求助10
10秒前
弎夜完成签到,获得积分10
10秒前
孔涛发布了新的文献求助10
11秒前
yaya完成签到,获得积分10
11秒前
科研通AI5应助axiba采纳,获得10
12秒前
整点儿薯条应助芋泥泥泥采纳,获得20
12秒前
板栗猪猪完成签到 ,获得积分10
13秒前
马甲发布了新的文献求助30
13秒前
香蕉觅云应助缓慢钢笔采纳,获得10
14秒前
英俊的铭应助LlLly采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4895590
求助须知:如何正确求助?哪些是违规求助? 4177439
关于积分的说明 12968084
捐赠科研通 3940612
什么是DOI,文献DOI怎么找? 2161948
邀请新用户注册赠送积分活动 1180309
关于科研通互助平台的介绍 1085892