Machine learning-based prediction for settling velocity of microplastics with various shapes

微塑料 沉淀 无量纲量 终端速度 形状因子 机械 生物系统 数学 环境科学 几何学 物理 环境工程 地质学 生物 海洋学
作者
Shangtuo Qian,Xuyang Qiao,Wenming Zhang,Zijian Yu,Shunan Dong,Jiangang Feng
出处
期刊:Water Research [Elsevier BV]
卷期号:249: 121001-121001 被引量:23
标识
DOI:10.1016/j.watres.2023.121001
摘要

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QYPANG发布了新的文献求助10
1秒前
淘气科研发布了新的文献求助10
1秒前
gehongbing完成签到 ,获得积分10
1秒前
王WW完成签到,获得积分10
1秒前
dong应助活泼的小伙采纳,获得10
1秒前
1秒前
2秒前
Bo发布了新的文献求助30
2秒前
3秒前
微笑面包关注了科研通微信公众号
3秒前
3秒前
4秒前
徐逊发布了新的文献求助10
4秒前
飞雪完成签到,获得积分10
4秒前
孙晨维完成签到,获得积分10
5秒前
wanci应助六七采纳,获得10
5秒前
852应助夕照古风采纳,获得10
5秒前
5秒前
6秒前
6秒前
Lucas应助dby采纳,获得10
7秒前
科研通AI2S应助荷欢笙采纳,获得10
7秒前
Akim应助bfbdfbdf采纳,获得10
7秒前
心安完成签到,获得积分10
7秒前
NexusExplorer应助wuming7890采纳,获得10
7秒前
优美静芙完成签到,获得积分10
7秒前
洁净茗茗发布了新的文献求助10
7秒前
毛毛发布了新的文献求助10
8秒前
Rubby应助采花大盗采纳,获得10
8秒前
8秒前
Ada发布了新的文献求助10
8秒前
阿义完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
T拐拐发布了新的文献求助10
9秒前
9秒前
在水一方应助动听冰淇淋采纳,获得10
9秒前
9秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092