Machine learning-based prediction for settling velocity of microplastics with various shapes

微塑料 沉淀 无量纲量 终端速度 形状因子 机械 生物系统 数学 环境科学 几何学 物理 环境工程 地质学 生物 海洋学
作者
Shangtuo Qian,Xuyang Qiao,Wenming Zhang,Zijian Yu,Shunan Dong,Jiangang Feng
出处
期刊:Water Research [Elsevier]
卷期号:249: 121001-121001 被引量:23
标识
DOI:10.1016/j.watres.2023.121001
摘要

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田所浩二完成签到 ,获得积分10
刚刚
1秒前
华仔应助zhdan采纳,获得10
1秒前
ghhhn完成签到,获得积分10
1秒前
3秒前
皮皮怪完成签到,获得积分10
3秒前
3秒前
FIB菜狗发布了新的文献求助10
3秒前
火柴two完成签到,获得积分10
3秒前
旺旺发布了新的文献求助10
4秒前
共享精神应助奋斗的秋珊采纳,获得10
4秒前
4秒前
ICBC完成签到 ,获得积分10
4秒前
连夜雪完成签到,获得积分10
4秒前
小蘑菇应助smjjs采纳,获得20
4秒前
天天快乐应助困困小馒头采纳,获得10
4秒前
俭朴尔白发布了新的文献求助30
4秒前
licheng完成签到,获得积分10
4秒前
Owen应助疯狂的洋葱采纳,获得30
5秒前
王通发布了新的文献求助10
5秒前
5秒前
静_静完成签到 ,获得积分10
5秒前
5秒前
二哈发布了新的文献求助10
6秒前
Mikecheng完成签到,获得积分10
6秒前
6秒前
隐形曼青应助巴旦木采纳,获得10
7秒前
7秒前
Silvia完成签到,获得积分10
7秒前
bkagyin应助迅速路人采纳,获得10
7秒前
科目三应助寒塘渡鹤影采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Kaede发布了新的文献求助10
8秒前
8秒前
李卓完成签到,获得积分10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
桐桐应助热心的大船采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444