Machine learning-based prediction for settling velocity of microplastics with various shapes

微塑料 沉淀 无量纲量 终端速度 形状因子 机械 生物系统 数学 环境科学 几何学 物理 环境工程 地质学 生物 海洋学
作者
Shangtuo Qian,Xuyang Qiao,Wenming Zhang,Zijian Yu,Shunan Dong,Jiangang Feng
出处
期刊:Water Research [Elsevier]
卷期号:249: 121001-121001 被引量:23
标识
DOI:10.1016/j.watres.2023.121001
摘要

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小橙完成签到 ,获得积分10
2秒前
2秒前
东方欲晓完成签到,获得积分10
4秒前
俭朴新之完成签到 ,获得积分10
4秒前
丘比特应助可靠盼旋采纳,获得10
5秒前
9秒前
今后应助叶小文采纳,获得10
9秒前
甜甜友容完成签到,获得积分10
9秒前
12秒前
14秒前
yuqinghui98发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
ZetianYang完成签到,获得积分10
16秒前
16秒前
16秒前
吟月归客完成签到,获得积分10
16秒前
6a发布了新的文献求助10
16秒前
18秒前
haishixigua完成签到,获得积分10
19秒前
Akim应助汪汪队立大功采纳,获得10
20秒前
21秒前
叶小文发布了新的文献求助10
21秒前
科研通AI6应助秀丽手机采纳,获得10
21秒前
幕帆发布了新的文献求助10
23秒前
Ava应助追寻的身影采纳,获得30
25秒前
酒尚温发布了新的文献求助30
26秒前
27秒前
橘涂完成签到 ,获得积分10
28秒前
29秒前
29秒前
30秒前
lindalin完成签到,获得积分10
31秒前
小明完成签到 ,获得积分10
31秒前
32秒前
安详砖家发布了新的文献求助10
32秒前
所所应助迅速的成协采纳,获得10
33秒前
SciGPT应助小白采纳,获得10
33秒前
33秒前
梁潇桦发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370