Machine learning-based prediction for settling velocity of microplastics with various shapes

微塑料 沉淀 无量纲量 终端速度 形状因子 机械 生物系统 数学 环境科学 几何学 物理 环境工程 地质学 生物 海洋学
作者
Shangtuo Qian,Xuyang Qiao,Wenming Zhang,Zijian Yu,Shunan Dong,Jiangang Feng
出处
期刊:Water Research [Elsevier]
卷期号:249: 121001-121001 被引量:23
标识
DOI:10.1016/j.watres.2023.121001
摘要

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到 ,获得积分10
刚刚
1秒前
wloe发布了新的文献求助10
2秒前
大模型应助无辜的亦云采纳,获得10
2秒前
2秒前
3秒前
苍蓝所栖发布了新的文献求助50
3秒前
3秒前
斯内克完成签到,获得积分10
3秒前
yehata完成签到,获得积分10
3秒前
酷波er应助浮浮世世采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
Wuyi发布了新的文献求助10
8秒前
asdf发布了新的文献求助10
8秒前
小宋完成签到,获得积分20
10秒前
lwh完成签到,获得积分10
10秒前
10秒前
icey发布了新的文献求助10
11秒前
Magic麦发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
Ash完成签到,获得积分10
12秒前
14秒前
16秒前
17秒前
asdf完成签到,获得积分10
17秒前
18秒前
18秒前
隐形曼青应助萍苹平采纳,获得10
18秒前
烟花应助袁志采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
斯文败类应助蒸盐粥采纳,获得10
20秒前
20秒前
yuer发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223