Machine learning-based prediction for settling velocity of microplastics with various shapes

微塑料 沉淀 无量纲量 终端速度 形状因子 机械 生物系统 数学 环境科学 几何学 物理 环境工程 地质学 生物 海洋学
作者
Shangtuo Qian,Xuyang Qiao,Wenming Zhang,Zijian Yu,Shunan Dong,Jiangang Feng
出处
期刊:Water Research [Elsevier BV]
卷期号:249: 121001-121001 被引量:23
标识
DOI:10.1016/j.watres.2023.121001
摘要

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔风机发布了新的文献求助10
刚刚
刚刚
leena完成签到,获得积分10
刚刚
无私迎海发布了新的文献求助10
2秒前
深情安青应助风中的如南采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
Xiaoxiao应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得30
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助121311采纳,获得10
5秒前
思源应助小傻子采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得30
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
chf发布了新的文献求助10
5秒前
汉堡包应助科研通管家采纳,获得20
6秒前
彭于晏应助崔风机采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
homeland完成签到,获得积分10
7秒前
7秒前
7秒前
微笑沛文完成签到 ,获得积分10
8秒前
Mrmiss666发布了新的文献求助10
8秒前
九三完成签到,获得积分10
9秒前
张亚茹发布了新的文献求助10
10秒前
Yingqian_Zhang完成签到 ,获得积分10
12秒前
homeland发布了新的文献求助10
12秒前
成就青筠发布了新的文献求助20
13秒前
烟花应助满当当采纳,获得10
13秒前
pretty完成签到 ,获得积分10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214812
求助须知:如何正确求助?哪些是违规求助? 4390220
关于积分的说明 13669187
捐赠科研通 4251701
什么是DOI,文献DOI怎么找? 2332850
邀请新用户注册赠送积分活动 1330443
关于科研通互助平台的介绍 1284228