Ship imaging trajectory extraction via an aggregated you only look once (YOLO) model

计算机科学 弹道 帧(网络) 帧速率 实时计算 人工智能 分类 深度学习 对象(语法) 电信 情报检索 天文 物理
作者
Xinqiang Chen,Meilin Wang,Jun Ling,Huafeng Wu,Bing Wu,Chaofeng Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107742-107742 被引量:24
标识
DOI:10.1016/j.engappai.2023.107742
摘要

Maritime traffic community has paid a huge amount of focuses to establish maritime intelligent transportation infrastructure for the purpose of enhancing maritime traffic safety and efficiency. Maritime surveillance video is considered as a type of fundamental data sources for establishing intelligent maritime transportation infrastructure towards smart ship era. To that end, the study proposes an aggregated deep learning model-supported ship imaging trajectory extraction framework. The proposed framework starts by detecting ships from maritime images via a novel You Only Look Once (YOLO) model. More specifically, the proposed ship trajectory extraction framework obtains ship positions in a frame-by-frame manner via the proposed poly-YOLO module. Then, the proposed model maps ship positions in neighboring consecutive maritime images via an Enhanced Deep Sort (EDS) module. Experimental results suggest that the proposed ship trajectory extraction model achieves satisfactory performance due to that the average values of index multiple-object tracking accuracy (MOTa), recall rate (Rid) and index aggregated detection accuracy (Aggid) are larger than 89% (which outperform the comparison algorithms). The study can help varied maritime traffic participants obtain accurate on-site traffic situations in the smart ship era.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫x莫完成签到 ,获得积分10
刚刚
loewy完成签到,获得积分10
刚刚
黄婷发布了新的文献求助10
刚刚
刚刚
yuan完成签到,获得积分10
刚刚
zho发布了新的文献求助10
刚刚
刚刚
苏苏完成签到,获得积分10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得80
1秒前
Hello应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
万能图书馆应助内向秋寒采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
zzzq应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
soso应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
zzzq应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
hzauhzau发布了新的文献求助10
2秒前
2秒前
秀丽千山发布了新的文献求助10
2秒前
饭小心发布了新的文献求助10
2秒前
叶梓发布了新的文献求助10
2秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794