[Evaluation of the application value of seven tumor-associated autoantibodies in non-small cell lung cancer based on machine learning algorithms].

肺癌 医学 算法 阶段(地层学) 逻辑回归 内科学 肺炎 心胸外科 机器学习 肿瘤科 外科 生物 计算机科学 古生物学
作者
Yongping Hao,Lina Wu,Yang Lyu,Y Z Liu,X. S. Qin,Rui Zheng
出处
期刊:PubMed 卷期号:57 (11): 1827-1838
标识
DOI:10.3760/cma.j.cn112150-20221111-01099
摘要

Objective: Based on the diagnostic model established and validated by the machine learning algorithm, to investigate the value of seven tumor-associated autoantibodies (TAABs), namely anti-p53, PGP9.5, SOX2, GAGE7, GBU4-5, MAGEA1 and CAGE antibodies in the diagnosis of non-small cell lung cancer (NSCLC) and to differentiate between NSCLC and benign lung nodules. Methods: This was a retrospective study of clinical cases. Model building queue: a total of 227 primary patients who underwent radical lung cancer surgery in the Department of Thoracic Surgery, Shengjing Hospital of China Medical University, from November 2018 to June 2021 were collected as the NSCLC group, and 120 cases of benign lung nodules, 122 cases of pneumonia and 120 healthy individuals were selected as the control groups. External validation queue: a total of 100 primary patients who underwent radical lung cancer surgery in the Department of Thoracic Surgery, Shengjing Hospital of China Medical University, from May 2022 to December 2022 were collected as the NSCLC group, and 36 cases of benign lung nodules, 32 cases of pneumonia and 44 healthy individuals were selected as the control groups. In addition, NSCLC was divided into early (stage 0-ⅠB) and mid-to-late (stage ⅡA-ⅢB) subgroups. The levels of 7-TAABs were detected by enzyme immunoassay, and serum concentrations of CEA and CYFRA21-1 were detected by electrochemiluminescence. Four machine learning algorithms, XGBoost, Lasso logistic regression, Naïve Bayes, and Support Vector Machine are used to establish classification models. And the best performance model was chosen based on evaluation metrics and a multi-indicator combination model was established. In addition, an online risk evaluation tool was generated to assist clinical applications. Results: Except for p53, the levels of rest six TAABs, CEA and CYFRA21-1 were significantly higher in the NSCLC group (P<0.05). Serum levels of anti-SOX2 [1.50 (0.60, 10.85) U/ml vs. 0.8 (0.20, 2.10) U/ml, Z=2.630, P<0.05] and MAGEA1 antibodies [0.20 (0.10, 0.43) U/ml vs. 0.10 (0.10, 0.20) U/ml, Z=2.289, P<0.05], CEA [3.13 (2.12, 5.64) ng/ml vs. 2.11 (1.25, 3.09) ng/ml, Z=3.970, P<0.05] and CYFRA21-1 [4.31(2.37, 7.14) ng/ml vs. 2.53(1.92, 3.48) ng/ml, Z=3.959, P<0.05] were significantly higher in patients with mid-to late-stage NSCLC than in early stages. XGBoost model was used to establish a multi-indicator combined detection model (after removing p53). 6-TAABs combined with CYFRA21-1 was the best combination model for the diagnosis of NSCLC and early NSCLC. The optimal diagnostic thresholds were 0.410, 0.701 and 0.744, and the AUC was 0.828, 0.757 and 0.741, respectively (NSCLC vs. control, NSCLC vs. benign lung nodules, early NSCLC vs. benign lung nodules) in model building queue, and the AUC was 0.760, 0.710 and 0.660, respectively (NSCLC vs. control, NSCLC vs. benign lung nodules, early NSCLC vs. benign lung nodules) in external validation queue. Conclusion: In the diagnosis of NSCLC, 6-TAABs is superior to that of traditional tumor markers CEA and CYFRA21-1, and can compensate for the shortcomings of traditional tumor markers. For the differential diagnosis of NSCLC and benign lung nodule, "6-TAABs+CYFRA21-1" is the most cost-effective combination, and plays an important role in prevention and screening for early lung cancer.目的: 以机器学习算法建立并验证的诊断模型为依据,探讨7种肿瘤相关自身抗体(TAABs),即抗p53、PGP9.5、SOX2、GAGE7、GBU4-5、MAGEA1和CAGE抗体,在非小细胞肺癌(NSCLC)诊断及其与良性肺结节鉴别诊断中的应用价值。 方法: 本研究为临床病例回顾性研究。模型建立队列来自2018年11月至2021年6月于中国医科大学附属盛京医院胸外科进行肺癌根治术的227例初治NSCLC患者为NSCLC组,同时选择良性肺结节120例、肺炎122例及健康者120名作为对照组;外部验证队列来自2022年5月至12月,中国医科大学附属盛京医院胸外科行肺癌根治术的100例初治NSCLC患者为NSCLC组,同时选择良性肺结节36例、肺炎32例及健康者44名作为对照组。将NSCLC分成早期(0~ⅠB期)与中晚期(ⅡA~ⅢB期)亚组。采用酶联免疫法检测7种TAABs,电化学发光法检测癌胚抗原(CEA)和细胞角蛋白19片段(CYFRA21-1)在各组之间的血清浓度。采用4种机器学习算法,包括极限梯度提升(XGBoost)、Lasso逻辑回归(LR)、朴素贝叶斯(NB)、以及支持向量机(SVM)分别建立多指标联合检测模型,并选择XGBoost作为最佳算法建立了针对临床应用的患者在线风险评估工具。 结果: 除抗p53抗体外,其余6种TAABs及CEA、CYFRA21-1在NSCLC中血清浓度显著升高(P<0.05);中晚期NSCLC患者血清抗SOX2[1.50(0.60,10.85)U/ml vs.0.8(0.20,2.10)U/ml,Z=2.630,P<0.05]和MAGEA1抗体[0.20(0.10,0.43)U/ml vs. 0.10(0.10,0.20)U/ml,Z=2.289,P<0.05]及CEA[3.13(2.12,5.64)ng/ml vs. 2.11(1.25,3.09)ng/ml,Z=3.970,P<0.05]和CYFRA21-1[4.31(2.37,7.14)ng/ml vs. 2.53(1.92,3.48)ng/ml,Z=3.959,P<0.05]浓度显著高于早期。采用机器学习算法XGBoost建立多指标联合检测模型(剔除p53后),6-TAABs联合CYFRA21-1均为诊断NSCLC及NSCLC早期的最佳组合模型,诊断最佳界值分别为0.410、0.701、0.744,AUC分别为0.828、0.757、0.741(NSCLC vs. 对照组,NSCLC vs. 良性肺结节组,早期NSCLC vs. 良性肺结节组)。模型的外部验证队列的AUC分别为0.760、0.710、0.660(NSCLC vs. 对照组,NSCLC vs. 良性肺结节组,早期NSCLC vs. 良性肺结节组)。 结论: 在NSCLC诊断中,6-TAABs诊断效能优于传统肿瘤标志物CEA和CYFRA21-1;6-TAABs+CYFRA21-1检测模型为诊断NSCLC最优的模型,其可有效地辅助临床用于NSCLC及NSCLC早期与良性肺结节的鉴别诊断,在肺癌预防和早期筛查中发挥重要作用。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUIRIGO完成签到,获得积分10
刚刚
phraly发布了新的文献求助10
刚刚
丹丹子完成签到 ,获得积分10
1秒前
POWER完成签到,获得积分10
1秒前
muyassar完成签到,获得积分10
1秒前
嚭嚭发布了新的文献求助10
1秒前
科研通AI2S应助yang采纳,获得10
1秒前
莫羽倾尘完成签到,获得积分10
2秒前
再美完成签到,获得积分10
2秒前
天天小女孩完成签到,获得积分10
2秒前
光亮的自行车完成签到,获得积分0
3秒前
文小杰完成签到,获得积分10
3秒前
活力鸡完成签到,获得积分10
3秒前
wyblobin完成签到,获得积分10
3秒前
梁间容完成签到 ,获得积分10
3秒前
3秒前
嵇南露完成签到,获得积分10
4秒前
荔枝的油饼iKun完成签到,获得积分10
4秒前
枣核儿完成签到,获得积分10
4秒前
飞翔的荷兰人完成签到,获得积分10
5秒前
哟哟哟完成签到,获得积分10
6秒前
carlin完成签到,获得积分10
6秒前
嚭嚭完成签到,获得积分10
8秒前
坦率的傲芙完成签到,获得积分10
8秒前
沉静冬易完成签到,获得积分10
8秒前
RJL完成签到,获得积分10
8秒前
宁幼萱完成签到,获得积分10
8秒前
爆米花应助RowanLuo采纳,获得10
9秒前
乐乐应助wang采纳,获得10
9秒前
10秒前
xl1990完成签到,获得积分10
10秒前
mahliya完成签到,获得积分10
10秒前
安静代萱完成签到 ,获得积分10
10秒前
小巧谷波完成签到 ,获得积分10
11秒前
11秒前
77完成签到,获得积分10
12秒前
科研废柴完成签到,获得积分10
13秒前
光崽是谁完成签到,获得积分10
13秒前
Bin完成签到,获得积分10
13秒前
lym完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027