MoS2 Nanoflower-Deposited g-C3N4 Nanosheet 2D/2D Heterojunction for Efficient Photo/Electrocatalytic Hydrogen Evolution

异质结 材料科学 纳米片 电子转移 介电谱 光催化 光致发光 量子产额 量子效率 电化学 催化作用 光电子学 纳米技术 光化学 化学 电极 物理化学 光学 物理 荧光 生物化学
作者
Amir Mehtab,Syed Asim Ali,Pravin P. Ingole,Yuanbing Mao,Saad M. Alshehri,Tokeer Ahmad
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (23): 12003-12012 被引量:64
标识
DOI:10.1021/acsaem.3c02173
摘要

The development of heterostructures for precise electron-transfer paths at the p–n junction interface is of great significance for photo/electrocatalytic (EC) applications. In this paper, we have presented a strategy to precisely transfer electrons from the conduction band of MoS2 to the valence band site of g-C3N4 through a Z-scheme manner. The heterostructure demonstrated a 2-fold improvement in catalytic efficiency at 20 wt % MoS2/g-C3N4 (18.04 mmol/gcat–1) with an apparent quantum yield (AQY) of H2 generation approaching 34% by using a 300 W Xe lamp. The enhanced photocatalytic (PC) H2 evolution of the heterostructure catalyst shows that the addition of MoS2 NSs causes more active sites and the prevention of electron–hole pair recombination by facilitating an increased rate of electron transport at the interface. In addition, MoS2/g-C3N4 required the lowest overpotentials of 410 and 262 mV to reach 20 mA cm–2 current density for the OER and HER performances, respectively. Subsequently, impedance spectroscopy indicates low charge transfer resistance, and photoluminescence analysis showed better-photogenerated charge transfer kinetics for the heterostructures, which contributed to their improved photo/electrochemical performance. For intriguing photocatalytic applications in the future, this study offers a path for designing and synthesizing a chemically linked Z-scheme interface with atomic accuracy. Further, the postphoto/electrocatalytic characterizations revealed the intact geometry of the catalyst, indicating the long-term durability of the catalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Surge发布了新的文献求助10
3秒前
liyingpeng发布了新的文献求助10
3秒前
暴躁的香旋完成签到,获得积分20
3秒前
3秒前
香蕉觅云应助润润轩轩采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
斯文败类应助Ym采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
研友_LBR9gL完成签到 ,获得积分10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
勤劳绿柳应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
123HJJJKJJKJK应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
苏小猫发布了新的文献求助10
6秒前
科研通AI5应助夏夏采纳,获得10
6秒前
6秒前
酷波er应助练习者采纳,获得10
7秒前
7秒前
菜菜发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399