Unveiling first report on in silico modeling of aquatic toxicity of organic chemicals to Labeo rohita (Rohu) employing QSAR and q-RASAR

数量结构-活动关系 野鲮属 水生毒理学 毒性 生物信息学 急性毒性 环境毒理学 毒理 生物 化学 渔业 生物信息学 生物化学 有机化学 基因
作者
A Gallagher,Supratik Kar
出处
期刊:Chemosphere [Elsevier]
卷期号:349: 140810-140810
标识
DOI:10.1016/j.chemosphere.2023.140810
摘要

Labeo rohita, a fish species within the Carp family, holds significant dietary and aquacultural importance in South Asian countries. However, the habitats of L. rohita often face exposure to various harmful pesticides and organic compounds originating from industrial and agricultural runoff. It is challenging to individually investigate the effects of each potentially harmful compound. In such cases, in silico techniques like Quantitative Structure-Activity Relationship (QSAR) and quantitative Read-Across Structure-Activity Relationship (q-RASAR) can be employed to construct algorithmic models capable of simultaneously assessing the toxicity of numerous compounds. We utilized the US EPA's ToxValDB database to curate data regarding acute median lethal concentration (LC50) toxicity for L. rohita. The experimental variables included study type (mortality), study duration (ranging from 0.25 hours to 4 hours), exposure route (static, flowthrough, and renewal), exposure method (drinking water), and types of chemicals (industrial chemicals and pharmaceuticals). Using this dataset, we developed regression-based QSAR and q-RASAR models to predict chemical toxicity to L. rohita based on chemical descriptors. The key descriptors for predicting the toxicity of L. rohita in the regression-based QSAR model include F05[S–Cl], SpMax_EA(ri), s4_relPathLength_2, and SpDiam_AEA(ed). These descriptors can be employed to estimate the toxicity of untested compounds and aid in the development of compounds with lower toxicity based on the presence or absence of these descriptors. Both the QSAR and q-RASAR models serve as valuable tools for understanding the chemicals' structural features responsible for toxicity and for filling gaps in aquatic toxicity data by predicting the toxicity of newly untested compounds in relation to L. rohita. Finally, the developed best model was employed to predict 297 external chemicals, the most toxic substances to L. rohita were identified as cyhalothrin, isobornyl thiocyanatoacetate, and paclobutrzol, while the least toxic ones included ethyl acetate, ethylthiourea, and n-butyric acid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12344555完成签到,获得积分10
刚刚
陈冠羽发布了新的文献求助10
1秒前
石头发布了新的文献求助10
1秒前
武雨寒发布了新的文献求助10
3秒前
jzt12138发布了新的文献求助10
3秒前
路人甲完成签到,获得积分10
3秒前
dingm2发布了新的文献求助10
4秒前
5秒前
wu完成签到,获得积分10
8秒前
8秒前
Yiling发布了新的文献求助10
9秒前
大方半莲完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
隐形曼青应助荔枝多酚采纳,获得10
11秒前
小鱼仔关注了科研通微信公众号
11秒前
14秒前
小蘑菇应助dingm2采纳,获得30
15秒前
1GE发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
眯眯眼完成签到 ,获得积分10
15秒前
缓慢氧化发布了新的文献求助10
15秒前
15秒前
Wiesen发布了新的文献求助10
16秒前
苗条尔白完成签到,获得积分10
17秒前
一二发布了新的文献求助10
19秒前
20秒前
医学生发布了新的文献求助10
20秒前
Wiesen完成签到,获得积分10
21秒前
情怀应助今天没带脑子采纳,获得10
21秒前
Kkk完成签到 ,获得积分10
21秒前
赢赢发布了新的文献求助10
21秒前
why完成签到,获得积分10
22秒前
22秒前
赵海锋发布了新的文献求助10
25秒前
医学生完成签到,获得积分10
25秒前
ZIYE完成签到,获得积分20
26秒前
领导范儿应助苗条尔白采纳,获得10
27秒前
Yapi发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736480
求助须知:如何正确求助?哪些是违规求助? 5366181
关于积分的说明 15333226
捐赠科研通 4880292
什么是DOI,文献DOI怎么找? 2622803
邀请新用户注册赠送积分活动 1571698
关于科研通互助平台的介绍 1528511