Unveiling first report on in silico modeling of aquatic toxicity of organic chemicals to Labeo rohita (Rohu) employing QSAR and q-RASAR

数量结构-活动关系 野鲮属 水生毒理学 毒性 生物信息学 急性毒性 环境毒理学 毒理 生物 化学 渔业 生物信息学 生物化学 有机化学 基因
作者
A Gallagher,Supratik Kar
出处
期刊:Chemosphere [Elsevier BV]
卷期号:349: 140810-140810
标识
DOI:10.1016/j.chemosphere.2023.140810
摘要

Labeo rohita, a fish species within the Carp family, holds significant dietary and aquacultural importance in South Asian countries. However, the habitats of L. rohita often face exposure to various harmful pesticides and organic compounds originating from industrial and agricultural runoff. It is challenging to individually investigate the effects of each potentially harmful compound. In such cases, in silico techniques like Quantitative Structure-Activity Relationship (QSAR) and quantitative Read-Across Structure-Activity Relationship (q-RASAR) can be employed to construct algorithmic models capable of simultaneously assessing the toxicity of numerous compounds. We utilized the US EPA's ToxValDB database to curate data regarding acute median lethal concentration (LC50) toxicity for L. rohita. The experimental variables included study type (mortality), study duration (ranging from 0.25 hours to 4 hours), exposure route (static, flowthrough, and renewal), exposure method (drinking water), and types of chemicals (industrial chemicals and pharmaceuticals). Using this dataset, we developed regression-based QSAR and q-RASAR models to predict chemical toxicity to L. rohita based on chemical descriptors. The key descriptors for predicting the toxicity of L. rohita in the regression-based QSAR model include F05[S–Cl], SpMax_EA(ri), s4_relPathLength_2, and SpDiam_AEA(ed). These descriptors can be employed to estimate the toxicity of untested compounds and aid in the development of compounds with lower toxicity based on the presence or absence of these descriptors. Both the QSAR and q-RASAR models serve as valuable tools for understanding the chemicals' structural features responsible for toxicity and for filling gaps in aquatic toxicity data by predicting the toxicity of newly untested compounds in relation to L. rohita. Finally, the developed best model was employed to predict 297 external chemicals, the most toxic substances to L. rohita were identified as cyhalothrin, isobornyl thiocyanatoacetate, and paclobutrzol, while the least toxic ones included ethyl acetate, ethylthiourea, and n-butyric acid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cipher完成签到 ,获得积分10
1秒前
脑洞疼应助LIUYONG采纳,获得10
1秒前
可乐完成签到,获得积分10
1秒前
2秒前
koukousang完成签到,获得积分10
3秒前
乐乐应助张无缺采纳,获得10
4秒前
三三完成签到,获得积分10
4秒前
平常荷花完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
阿胡发布了新的文献求助30
7秒前
水晶李完成签到 ,获得积分10
8秒前
脑洞疼应助静静子采纳,获得100
11秒前
新年好完成签到,获得积分10
12秒前
爆米花应助Michelle采纳,获得10
15秒前
15秒前
LYSM应助晴栀采纳,获得10
16秒前
Bean完成签到,获得积分10
16秒前
16秒前
16秒前
幸福妙柏完成签到 ,获得积分10
17秒前
汕头凯奇完成签到,获得积分10
18秒前
aoba完成签到 ,获得积分10
19秒前
潇洒的平松完成签到,获得积分10
20秒前
qwer完成签到,获得积分10
20秒前
fduqyy发布了新的文献求助10
20秒前
csu_zs完成签到,获得积分10
20秒前
20秒前
LILYpig完成签到 ,获得积分10
21秒前
文静醉易完成签到,获得积分10
21秒前
无聊的翠芙完成签到,获得积分10
22秒前
zhangxuhns完成签到,获得积分10
23秒前
大力哈密瓜完成签到,获得积分10
23秒前
无花果应助碧蓝碧凡采纳,获得10
24秒前
25秒前
26秒前
28秒前
蒋50完成签到,获得积分10
28秒前
不爱喝纯牛奶完成签到,获得积分10
29秒前
29秒前
图图发布了新的文献求助10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029