Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 航程(航空) 群体行为 公共物品 机器学习 数学 微观经济学 工程类 经济 数理经济学 人口学 社会学 航空航天工程
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Liu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:469: 128534-128534 被引量:16
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助凡111222采纳,获得10
1秒前
xdwu完成签到,获得积分10
2秒前
善学以致用应助小小米采纳,获得10
6秒前
7秒前
缓慢的饼干完成签到,获得积分10
8秒前
可耐的海雪完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
下次一定完成签到,获得积分10
12秒前
酱香饼不发布了新的文献求助10
13秒前
14秒前
zq发布了新的文献求助10
15秒前
魔幻宛海给魔幻宛海的求助进行了留言
16秒前
陈琰完成签到 ,获得积分10
16秒前
纯真寻冬完成签到,获得积分10
16秒前
有魅力的超短裙完成签到,获得积分10
17秒前
20秒前
周涨杰发布了新的文献求助10
20秒前
烟花应助摩天大楼采纳,获得10
21秒前
远辰发布了新的文献求助10
21秒前
24秒前
KK完成签到,获得积分10
24秒前
wanci应助lu采纳,获得10
26秒前
斯文败类应助zq采纳,获得10
26秒前
烧烤发布了新的文献求助30
27秒前
27秒前
28秒前
Yanyt发布了新的文献求助10
32秒前
苏信怜完成签到,获得积分10
32秒前
33秒前
摩天大楼发布了新的文献求助10
34秒前
想发paper的金鱼完成签到,获得积分10
35秒前
37秒前
量子星尘发布了新的文献求助10
37秒前
abou完成签到 ,获得积分10
38秒前
38秒前
苹果隶关注了科研通微信公众号
38秒前
39秒前
流也完成签到,获得积分10
39秒前
桃园发布了新的文献求助10
40秒前
小稻草人完成签到,获得积分10
41秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457719
求助须知:如何正确求助?哪些是违规求助? 4563978
关于积分的说明 14292892
捐赠科研通 4488761
什么是DOI,文献DOI怎么找? 2458678
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343