已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 航程(航空) 群体行为 公共物品 机器学习 数学 微观经济学 工程类 经济 数理经济学 人口学 社会学 航空航天工程
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Liu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:469: 128534-128534 被引量:16
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
善学以致用应助山水之乐采纳,获得10
2秒前
2秒前
1111完成签到 ,获得积分10
2秒前
陶醉晓凡发布了新的文献求助10
3秒前
123完成签到,获得积分10
4秒前
FashionBoy应助Lavender采纳,获得10
4秒前
4秒前
cc完成签到,获得积分10
5秒前
小桃枝发布了新的文献求助10
6秒前
zeng完成签到,获得积分10
7秒前
moon完成签到,获得积分10
7秒前
7秒前
英姑应助大吉采纳,获得10
8秒前
8秒前
Hello应助wdd采纳,获得10
8秒前
CodeCraft应助小刘哥儿采纳,获得10
8秒前
9秒前
羽羽完成签到 ,获得积分10
9秒前
Raven应助胡豆采纳,获得10
9秒前
10秒前
xiaomeng完成签到 ,获得积分10
10秒前
逃跑冰蓝发布了新的文献求助10
10秒前
俭朴映阳发布了新的文献求助10
11秒前
打打应助Zyc采纳,获得10
13秒前
阿明留下了新的社区评论
14秒前
15秒前
Criminology34应助小刘哥儿采纳,获得10
16秒前
小林驳回了wjk应助
17秒前
17秒前
17秒前
科研通AI6应助正常采纳,获得10
18秒前
葱葱完成签到,获得积分10
19秒前
味精发布了新的文献求助10
20秒前
21秒前
21秒前
健康的千易完成签到,获得积分10
21秒前
Criminology34应助小桃枝采纳,获得10
22秒前
大吉发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719