Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 航程(航空) 群体行为 公共物品 机器学习 数学 微观经济学 工程类 经济 数理经济学 人口学 社会学 航空航天工程
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Liu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:469: 128534-128534 被引量:16
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
bwh完成签到,获得积分10
1秒前
积极的睫毛完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
小巧的烤鸡完成签到,获得积分20
5秒前
bwh发布了新的文献求助10
5秒前
超级桂花糕完成签到 ,获得积分10
5秒前
风中的哈密瓜完成签到 ,获得积分10
6秒前
6秒前
7秒前
自由的迎南完成签到 ,获得积分10
8秒前
风趣的语蕊完成签到,获得积分10
9秒前
隐形的迎南完成签到,获得积分10
10秒前
漂亮的若山完成签到,获得积分10
10秒前
搜集达人应助文献多多看采纳,获得10
10秒前
共享精神应助淡淡的南风采纳,获得10
11秒前
斯文败类应助淡淡的南风采纳,获得10
11秒前
11秒前
我是老大应助淡淡的南风采纳,获得10
11秒前
雪山飞虹发布了新的文献求助10
11秒前
11秒前
浮游应助淡淡的南风采纳,获得10
11秒前
共享精神应助淡淡的南风采纳,获得30
11秒前
酷波er应助淡淡的南风采纳,获得10
11秒前
NexusExplorer应助淡淡的南风采纳,获得10
11秒前
财源滚滚发布了新的文献求助10
11秒前
eee关闭了eee文献求助
12秒前
14秒前
房山芙完成签到,获得积分10
14秒前
烟花应助廿一采纳,获得10
14秒前
HHH发布了新的文献求助10
16秒前
16秒前
18秒前
财源滚滚完成签到,获得积分10
19秒前
初空月儿发布了新的文献求助10
19秒前
薏仁完成签到 ,获得积分10
21秒前
21秒前
ShiSakura完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304