Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 航程(航空) 群体行为 公共物品 机器学习 数学 微观经济学 工程类 经济 数理经济学 人口学 社会学 航空航天工程
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Liu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:469: 128534-128534 被引量:16
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
GGZ完成签到,获得积分10
1秒前
多多发布了新的文献求助30
2秒前
憨憨完成签到,获得积分20
2秒前
3秒前
健忘的蓉完成签到 ,获得积分10
3秒前
cshuijun完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
喃喃发布了新的文献求助10
5秒前
5秒前
弹指一挥间完成签到,获得积分10
5秒前
碧蓝丹烟发布了新的文献求助10
5秒前
wanci应助咖啡不加糖采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
qian发布了新的文献求助10
6秒前
ccamellia完成签到,获得积分10
6秒前
6秒前
τ涛完成签到,获得积分10
6秒前
沉默的倔驴应助moya采纳,获得10
8秒前
8秒前
hhh发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
訫藍完成签到,获得积分10
9秒前
cshuijun发布了新的文献求助10
10秒前
11秒前
11秒前
zt完成签到,获得积分10
11秒前
Orange应助小学僧采纳,获得10
11秒前
殷勤的帽子完成签到,获得积分10
12秒前
吴宵完成签到,获得积分0
12秒前
a111完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082