亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 群体行为 公共物品 机器学习 数学 微观经济学 经济 数理经济学 人口学 社会学
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Li
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:469: 128534-128534 被引量:1
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助孔不尤采纳,获得10
11秒前
岳莹晓完成签到 ,获得积分10
12秒前
MOFS发布了新的文献求助10
23秒前
25秒前
dms完成签到,获得积分10
25秒前
40秒前
48秒前
Jasper应助科研通管家采纳,获得10
51秒前
1分钟前
lty发布了新的文献求助10
1分钟前
不钓鱼完成签到,获得积分10
1分钟前
1分钟前
CodeCraft应助孔不尤采纳,获得10
1分钟前
gaoanan1发布了新的文献求助10
1分钟前
coolru完成签到 ,获得积分10
1分钟前
tejing1158完成签到 ,获得积分10
2分钟前
2分钟前
孔不尤发布了新的文献求助10
2分钟前
2分钟前
2分钟前
香蕉觅云应助xiao采纳,获得10
2分钟前
打打应助科研通管家采纳,获得20
2分钟前
江小美发布了新的文献求助10
2分钟前
3分钟前
江小美完成签到,获得积分10
3分钟前
3分钟前
孔不尤发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
hll完成签到,获得积分10
3分钟前
4分钟前
4分钟前
小宋发布了新的文献求助30
4分钟前
TARTALIA发布了新的文献求助10
4分钟前
自由的风完成签到,获得积分10
4分钟前
layman完成签到,获得积分10
4分钟前
4分钟前
小宋发布了新的文献求助10
4分钟前
Owen应助自由的风采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995359
求助须知:如何正确求助?哪些是违规求助? 3535200
关于积分的说明 11267162
捐赠科研通 3274991
什么是DOI,文献DOI怎么找? 1806511
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809782