Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 航程(航空) 群体行为 公共物品 机器学习 数学 微观经济学 工程类 经济 数理经济学 人口学 社会学 航空航天工程
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Liu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:469: 128534-128534 被引量:16
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvyan完成签到,获得积分10
刚刚
luck完成签到,获得积分10
刚刚
Jimmy完成签到,获得积分10
刚刚
1秒前
司空天磊完成签到,获得积分10
1秒前
含光无形完成签到 ,获得积分10
1秒前
ZY发布了新的文献求助10
1秒前
小官发布了新的文献求助10
2秒前
十一的耳朵不是特别好完成签到,获得积分10
2秒前
2秒前
四辈完成签到,获得积分10
2秒前
研友_8yX0xZ完成签到,获得积分10
2秒前
小薛完成签到,获得积分20
3秒前
3秒前
我是老大应助乐观秋柔采纳,获得10
3秒前
科研通AI6应助科研小子采纳,获得10
3秒前
ASUKA完成签到,获得积分10
4秒前
4秒前
liaoyoujiao完成签到,获得积分10
4秒前
4秒前
UUU发布了新的文献求助10
4秒前
钟馗完成签到,获得积分10
5秒前
Twonej完成签到,获得积分0
5秒前
啊七飞完成签到,获得积分10
5秒前
热爱发布了新的文献求助10
5秒前
大模型应助666采纳,获得10
6秒前
beauty_bear完成签到,获得积分10
6秒前
7秒前
潘杰完成签到,获得积分10
7秒前
缥缈夏山完成签到,获得积分10
7秒前
伍六柒发布了新的文献求助30
8秒前
诚心的傲芙完成签到,获得积分10
8秒前
asdasd发布了新的文献求助10
8秒前
研友_ZbP41L完成签到,获得积分10
8秒前
橘子sungua完成签到,获得积分10
8秒前
aaaaaa完成签到,获得积分10
9秒前
我爱吃糯米团子完成签到,获得积分10
9秒前
斯文败类应助t忒对采纳,获得10
9秒前
趙途嘵生完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961