Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 群体行为 公共物品 机器学习 数学 微观经济学 经济 数理经济学 人口学 社会学
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Li
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:469: 128534-128534 被引量:1
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Ying采纳,获得10
刚刚
酷波er应助happy采纳,获得10
刚刚
tttttt应助liv采纳,获得10
1秒前
有趣的灵魂完成签到,获得积分10
1秒前
1秒前
科目三应助1117采纳,获得10
2秒前
懂得珍惜发布了新的文献求助10
2秒前
爽哥完成签到,获得积分10
3秒前
iceice完成签到,获得积分10
3秒前
zz完成签到,获得积分10
3秒前
归海神刀完成签到,获得积分10
3秒前
陳某人发布了新的文献求助10
4秒前
4秒前
jella发布了新的文献求助10
4秒前
小黑驴完成签到 ,获得积分10
4秒前
诸事成就关注了科研通微信公众号
4秒前
superLmy完成签到 ,获得积分10
4秒前
微笑的依凝完成签到,获得积分10
4秒前
欢呼惜文完成签到,获得积分20
4秒前
kranran发布了新的文献求助10
5秒前
5秒前
6秒前
务实青筠完成签到 ,获得积分10
6秒前
enen发布了新的文献求助30
6秒前
爽哥发布了新的文献求助10
6秒前
英姑应助dyfsj采纳,获得10
6秒前
隋阳完成签到,获得积分10
7秒前
7秒前
leo完成签到,获得积分10
7秒前
8秒前
共享精神应助mm采纳,获得10
8秒前
8秒前
8秒前
犹豫小伙完成签到,获得积分20
9秒前
xcf关闭了xcf文献求助
9秒前
9秒前
huagu722发布了新的文献求助10
9秒前
醋溜爆肚儿完成签到,获得积分10
10秒前
懂得珍惜完成签到,获得积分20
10秒前
自由的奇异果完成签到,获得积分10
10秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443