Enhancing cooperative evolution in spatial public goods game by particle swarm optimization based on exploration and q-learning

公共物品游戏 人口 随机博弈 粒子群优化 计算机科学 数学优化 人工智能 群体行为 公共物品 机器学习 数学 微观经济学 经济 数理经济学 社会学 人口学
作者
Xianjia Wang,Zhipeng Yang,Guici Chen,Yanli Li
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:469: 128534-128534 被引量:1
标识
DOI:10.1016/j.amc.2024.128534
摘要

In evolutionary game theory, the emergence and maintenance of cooperative behavior in a population often face challenges posed by the temptation of free-riding behavior, which offers high individual payoff. Recently, apart from a range of mechanisms that promote the formation of cooperation, individual learning abilities under limited information have emerged as a key factor in adjusting agents' strategies. This paper introduces q-learning and particle swarm optimization into the realm of evolutionary dynamics. The primary focus is on investigating the impact of Exploration-based Particle Swarm Optimization (EPSO) and Q-learning-based Particle Swarm Optimization (QPSO) on the evolution of cooperation in a continuous version of the spatial public goods game (SPGG) with punishment. EPSO defines a rule for updating agents' strategies based on individual and limited population information. It also integrates an exploration mechanism to increase the diversity and directionality of the strategies. Additionally, QPSO serves to adaptively optimize the parameters of EPSO, addressing the issue of parameter control limiting the EPSO's performance. Leveraging experiential learning and iterative adjustment, QPSO progressively refines system parameters, thus rationally assimilating knowledge and updating individual strategies to attain optimal payoff. Through extensive simulation studies, it has been observed that employing QPSO's adaptively optimized parameters in EPSO significantly promotes the cooperative evolution in the SPGG with punishment. Furthermore, individual learning coefficients, when too low or too high, both facilitate the occurrence of cooperation. Simultaneously, higher inertia weight coefficients strengthen the system's cooperation level, while lower punishment intensity coefficients and higher gain intensity coefficients effectively promote the cooperation emergence and exert a significant influence on the overall cooperation level of the system. This research provides a new perspective for designing real-world schemes that encourage cooperation and offers insights into the intricate dynamics of cooperation in complex systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
九九完成签到,获得积分10
1秒前
ZZ发布了新的文献求助10
1秒前
yyy发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
皮皮灰熊完成签到,获得积分10
2秒前
无聊的依瑶完成签到,获得积分10
3秒前
完美世界应助black采纳,获得10
3秒前
weiwei发布了新的文献求助10
3秒前
李牧发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
阿乾发布了新的文献求助10
6秒前
小白发布了新的文献求助10
6秒前
solitary1124完成签到,获得积分10
6秒前
秦可可发布了新的文献求助30
6秒前
你的左轮呢完成签到,获得积分10
6秒前
山花花完成签到,获得积分10
7秒前
7秒前
WQ发布了新的文献求助10
8秒前
文若369发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
Ling发布了新的文献求助10
10秒前
yyy完成签到,获得积分20
10秒前
问题多多应助乌梅子酱采纳,获得10
10秒前
科研通AI5应助tlotw41采纳,获得10
11秒前
black完成签到,获得积分10
11秒前
Brain发布了新的文献求助10
12秒前
柠檬zky发布了新的文献求助10
12秒前
乂领域发布了新的文献求助10
12秒前
科研通AI6应助wp采纳,获得10
12秒前
bkagyin应助WQ采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917