计算机科学
对象(语法)
推论
目标检测
基本事实
过程(计算)
灵活性(工程)
编码(集合论)
财产(哲学)
算法
集合(抽象数据类型)
人工智能
计算机视觉
模式识别(心理学)
数学
哲学
统计
认识论
程序设计语言
操作系统
作者
Shoufa Chen,Peize Sun,Yibing Song,Ping Luo
标识
DOI:10.1109/iccv51070.2023.01816
摘要
We propose DiffusionDet, a new framework that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. During the training stage, object boxes diffuse from ground-truth boxes to random distribution, and the model learns to reverse this noising process. In inference, the model refines a set of randomly generated boxes to the output results in a progressive way. Our work possesses an appealing property of flexibility, which enables the dynamic number of boxes and iterative evaluation. The extensive experiments on the standard benchmarks show that DiffusionDet achieves favorable performance compared to previous well-established detectors. For example, DiffusionDet achieves 5.3 AP and 4.8 AP gains when evaluated with more boxes and iteration steps, under a zero-shot transfer setting from COCO to CrowdHuman. Our code is available at https://github.com/ShoufaChen/DiffusionDet.
科研通智能强力驱动
Strongly Powered by AbleSci AI