化学
质子输运
发色团
跨膜结构域
脱质子化
质子泵
跨膜蛋白
异构化
离子运输机
立体化学
生物物理学
膜
离子
光化学
生物化学
生物
ATP酶
受体
有机化学
酶
催化作用
作者
Taito Urui,Kouhei Hayashi,Maya Mizuno,Kazuhide Inoue,Hideki Kandori,Yasuhisa Mizutani
标识
DOI:10.1021/acs.jpcb.3c07510
摘要
The creation of unidirectional ion transporters across membranes represents one of the greatest challenges in chemistry. Proton-pumping rhodopsins are composed of seven transmembrane helices with a retinal chromophore bound to a lysine side chain via a Schiff base linkage and provide valuable insights for designing such transporters. What makes these transporters particularly intriguing is the discovery of both outward and inward proton-pumping rhodopsins. Surprisingly, despite sharing identical overall structures and membrane topologies, these proteins facilitate proton transport in opposite directions, implying an underlying rational mechanism that can transport protons in different directions within similar protein structures. In this study, we unraveled this mechanism by examining the chromophore structures of deprotonated intermediates in schizorhodopsins, a recently discovered subfamily of inward proton-pumping rhodopsins, using time-resolved resonance Raman spectroscopy. The photocycle of schizorhodopsins revealed the cis–trans thermal isomerization that precedes reprotonation at the Schiff base of the retinal chromophore. Notably, this order has not been observed in other proton-pumping rhodopsins, but here, it was observed in all seven schizorhodopsins studied across the archaeal domain, strongly suggesting that cis–trans thermal isomerization preceding reprotonation is a universal feature of the schizorhodopsin family. Based on these findings, we propose a structural basis for the remarkable order of events crucial for facilitating inward proton transport. The mechanism underlying inward proton transport by schizorhodopsins is straightforward and rational. The insights obtained from this study hold great promise for the design of transmembrane unidirectional ion transporters.
科研通智能强力驱动
Strongly Powered by AbleSci AI