Clustering by chemicals: A novel examination of chemical pollutants and social vulnerability in children and adolescents

全国健康与营养检查调查 环境卫生 社会脆弱性 空气污染 可能性 人口 优势比 污染物 环境流行病学 星团(航天器) 逻辑回归 人口学 医学 心理干预 生物 生态学 病理 精神科 社会学 内科学 程序设计语言 计算机科学
作者
Carin Molchan,Wenhui Zhang,Anne M. Fitzpatrick,Abby Mutic
出处
期刊:Environmental Research [Elsevier]
卷期号:250: 118456-118456 被引量:5
标识
DOI:10.1016/j.envres.2024.118456
摘要

Inhaled air pollutants are environmental determinants of health with negative impacts on human health. Air pollution has been linked to the incidence and progression of disease, with its effects unequally distributed across the population. Children compared to adults are a highly vulnerable group and suffer disproportionately from systemic environmental inequities exacerbated by social determinants. To explore air pollution cluster patterns among 6- to 19-year-olds from the 2015–2016 National Health and Nutrition Examination Survey (NHANES) and examine chemical cluster associations with social vulnerability. NHANES data was extracted for 697 children and adolescents. Social vulnerability characteristics from questionnaires were assembled to construct a modified social vulnerability index (SVI). Thirty-four air pollutant exposure chemicals were measured in urine and available from the laboratory sub-sample A data. K-means clustering classified the sample into three groups: low, medium, and high chemical exposure groups. Logistic regression was used to examine associations between high chemical group membership and SVI after adjusting for age, biological sex, and BMI. Complex survey analysis was conducted using SAS v9.4 to reflect population effects. Air pollution clusters revealed significant differences in mean concentrations between groups for 31 analytes with minimal distinction in mixture profiles. SVI scores differed significantly between the three groups (P = .002), and with each point increase in their SVI, the odds of a child being assigned to the highest-chemical exposure group increased by 11.55% (95% CI: 1.02–1.31), after adjustment. Unsupervised clustering of environmental sub-sample specimens from NHANES provides an innovative, multi-pollutant model that can be used to explore exposure patterns in this population. Utilizing the modified SVI allows for the identification of children that may be highly susceptible to air pollution. It is imperative to interpret the research findings in light of historical structural and discriminatory inequalities to develop beneficial and sustainable solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
an完成签到,获得积分20
刚刚
domkps发布了新的文献求助10
刚刚
cheong完成签到,获得积分10
1秒前
ewww完成签到 ,获得积分10
1秒前
1秒前
浮游应助luoshikun采纳,获得10
2秒前
猪猪hero发布了新的文献求助10
3秒前
喵誉玉完成签到 ,获得积分10
4秒前
5秒前
fjh发布了新的文献求助10
5秒前
lhhhhh完成签到,获得积分10
6秒前
6秒前
untilyou完成签到,获得积分10
8秒前
8秒前
lixu完成签到,获得积分20
8秒前
内向绮琴完成签到,获得积分10
8秒前
李健的小迷弟应助xyrt采纳,获得30
9秒前
10秒前
欣慰雪巧发布了新的文献求助10
11秒前
感谢完成签到,获得积分20
11秒前
科研通AI2S应助星辰亦会累采纳,获得10
12秒前
CC完成签到,获得积分10
12秒前
田様应助小芦铃采纳,获得10
12秒前
fjh完成签到,获得积分20
13秒前
慢慢完成签到,获得积分10
13秒前
淇奥完成签到 ,获得积分10
13秒前
14秒前
ccc完成签到,获得积分10
14秒前
SciGPT应助努力的安子采纳,获得10
14秒前
诚c发布了新的文献求助30
14秒前
CipherSage应助猪猪hero采纳,获得20
15秒前
15秒前
感谢发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
GingerF应助拓跋慕灵采纳,获得50
16秒前
进击的巨人完成签到,获得积分10
16秒前
制冷剂完成签到 ,获得积分10
16秒前
汉堡包应助如梦如画采纳,获得10
16秒前
nn发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492