Clustering by chemicals: A novel examination of chemical pollutants and social vulnerability in children and adolescents

全国健康与营养检查调查 环境卫生 社会脆弱性 空气污染 可能性 人口 优势比 污染物 环境流行病学 星团(航天器) 逻辑回归 人口学 医学 心理干预 生物 生态学 病理 精神科 社会学 内科学 程序设计语言 计算机科学
作者
Carin Molchan,Wen-Hui Zhang,Anne M. Fitzpatrick,Abby Mutic
出处
期刊:Environmental Research [Elsevier]
卷期号:250: 118456-118456 被引量:1
标识
DOI:10.1016/j.envres.2024.118456
摘要

Inhaled air pollutants are environmental determinants of health with negative impacts on human health. Air pollution has been linked to the incidence and progression of disease, with its effects unequally distributed across the population. Children compared to adults are a highly vulnerable group and suffer disproportionately from systemic environmental inequities exacerbated by social determinants. To explore air pollution cluster patterns among 6- to 19-year-olds from the 2015–2016 National Health and Nutrition Examination Survey (NHANES) and examine chemical cluster associations with social vulnerability. NHANES data was extracted for 697 children and adolescents. Social vulnerability characteristics from questionnaires were assembled to construct a modified social vulnerability index (SVI). Thirty-four air pollutant exposure chemicals were measured in urine and available from the laboratory sub-sample A data. K-means clustering classified the sample into three groups: low, medium, and high chemical exposure groups. Logistic regression was used to examine associations between high chemical group membership and SVI after adjusting for age, biological sex, and BMI. Complex survey analysis was conducted using SAS v9.4 to reflect population effects. Air pollution clusters revealed significant differences in mean concentrations between groups for 31 analytes with minimal distinction in mixture profiles. SVI scores differed significantly between the three groups (P = .002), and with each point increase in their SVI, the odds of a child being assigned to the highest-chemical exposure group increased by 11.55% (95% CI: 1.02–1.31), after adjustment. Unsupervised clustering of environmental sub-sample specimens from NHANES provides an innovative, multi-pollutant model that can be used to explore exposure patterns in this population. Utilizing the modified SVI allows for the identification of children that may be highly susceptible to air pollution. It is imperative to interpret the research findings in light of historical structural and discriminatory inequalities to develop beneficial and sustainable solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQ发布了新的文献求助10
刚刚
fls221发布了新的文献求助10
1秒前
丘比特应助hey采纳,获得10
2秒前
彭于晏应助魔幻的忆秋采纳,获得10
2秒前
2秒前
Ava应助杨旭采纳,获得10
3秒前
北城发布了新的文献求助30
4秒前
123发布了新的文献求助30
4秒前
墨尘发布了新的文献求助10
4秒前
4秒前
4秒前
H1发布了新的文献求助10
5秒前
研友_VZG7GZ应助缥缈梦柏采纳,获得10
6秒前
bkagyin应助常常采纳,获得10
7秒前
8秒前
8秒前
Coffey完成签到 ,获得积分10
8秒前
8秒前
小潘哒完成签到 ,获得积分10
9秒前
Lucas应助天天向上采纳,获得10
9秒前
weiwei发布了新的文献求助10
9秒前
华仔应助123采纳,获得10
10秒前
汉堡包应助Twilight采纳,获得10
12秒前
12秒前
LQ完成签到,获得积分10
12秒前
书芹发布了新的文献求助10
12秒前
M20小陈完成签到,获得积分10
13秒前
gl发布了新的文献求助30
13秒前
laity发布了新的文献求助10
13秒前
鱼0306完成签到,获得积分10
14秒前
Bloomy完成签到,获得积分10
14秒前
Jasper应助weiwei采纳,获得10
15秒前
领导范儿应助奋斗的桐采纳,获得10
15秒前
pp完成签到,获得积分10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
烟花应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
nenoaowu应助科研通管家采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127482
求助须知:如何正确求助?哪些是违规求助? 2778315
关于积分的说明 7738877
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292999
科研通“疑难数据库(出版商)”最低求助积分说明 623109
版权声明 600489