Clustering by chemicals: A novel examination of chemical pollutants and social vulnerability in children and adolescents

全国健康与营养检查调查 环境卫生 社会脆弱性 空气污染 可能性 人口 优势比 污染物 环境流行病学 星团(航天器) 逻辑回归 人口学 医学 心理干预 生物 生态学 病理 精神科 社会学 内科学 程序设计语言 计算机科学
作者
Carin Molchan,Wenhui Zhang,Anne M. Fitzpatrick,Abby Mutic
出处
期刊:Environmental Research [Elsevier]
卷期号:250: 118456-118456 被引量:5
标识
DOI:10.1016/j.envres.2024.118456
摘要

Inhaled air pollutants are environmental determinants of health with negative impacts on human health. Air pollution has been linked to the incidence and progression of disease, with its effects unequally distributed across the population. Children compared to adults are a highly vulnerable group and suffer disproportionately from systemic environmental inequities exacerbated by social determinants. To explore air pollution cluster patterns among 6- to 19-year-olds from the 2015–2016 National Health and Nutrition Examination Survey (NHANES) and examine chemical cluster associations with social vulnerability. NHANES data was extracted for 697 children and adolescents. Social vulnerability characteristics from questionnaires were assembled to construct a modified social vulnerability index (SVI). Thirty-four air pollutant exposure chemicals were measured in urine and available from the laboratory sub-sample A data. K-means clustering classified the sample into three groups: low, medium, and high chemical exposure groups. Logistic regression was used to examine associations between high chemical group membership and SVI after adjusting for age, biological sex, and BMI. Complex survey analysis was conducted using SAS v9.4 to reflect population effects. Air pollution clusters revealed significant differences in mean concentrations between groups for 31 analytes with minimal distinction in mixture profiles. SVI scores differed significantly between the three groups (P = .002), and with each point increase in their SVI, the odds of a child being assigned to the highest-chemical exposure group increased by 11.55% (95% CI: 1.02–1.31), after adjustment. Unsupervised clustering of environmental sub-sample specimens from NHANES provides an innovative, multi-pollutant model that can be used to explore exposure patterns in this population. Utilizing the modified SVI allows for the identification of children that may be highly susceptible to air pollution. It is imperative to interpret the research findings in light of historical structural and discriminatory inequalities to develop beneficial and sustainable solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
在水一方应助Moments采纳,获得10
2秒前
Ally发布了新的文献求助200
2秒前
瞒总发布了新的文献求助10
2秒前
Erika完成签到,获得积分10
4秒前
5秒前
Wxj246801完成签到,获得积分20
5秒前
CarryZ8完成签到,获得积分10
6秒前
禧煦给禧煦的求助进行了留言
7秒前
Erika发布了新的文献求助10
10秒前
杨恭鑫发布了新的文献求助10
12秒前
小蚂蚁完成签到,获得积分10
12秒前
Y.完成签到,获得积分10
13秒前
邓娅琴完成签到 ,获得积分10
13秒前
14秒前
感动的大树完成签到,获得积分10
14秒前
15秒前
飘逸的又夏完成签到 ,获得积分10
16秒前
haha完成签到 ,获得积分10
17秒前
CipherSage应助顺顺采纳,获得10
17秒前
20秒前
23秒前
科研通AI2S应助猪猪hero采纳,获得10
23秒前
Lv完成签到,获得积分10
25秒前
阿飞飞啊发布了新的文献求助10
25秒前
夜雨微眠完成签到,获得积分10
28秒前
研友_n0kYwL发布了新的文献求助10
28秒前
木子完成签到 ,获得积分10
30秒前
32秒前
33秒前
小潘完成签到,获得积分10
35秒前
sb完成签到,获得积分10
36秒前
36秒前
zhigaow发布了新的文献求助10
38秒前
上官若男应助中单阿飞采纳,获得10
38秒前
共享精神应助cc采纳,获得10
39秒前
橙子完成签到,获得积分10
42秒前
43秒前
普鲁斯特完成签到,获得积分10
43秒前
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499138
求助须知:如何正确求助?哪些是违规求助? 4596150
关于积分的说明 14452711
捐赠科研通 4529291
什么是DOI,文献DOI怎么找? 2481892
邀请新用户注册赠送积分活动 1465918
关于科研通互助平台的介绍 1438802