Clustering by chemicals: A novel examination of chemical pollutants and social vulnerability in children and adolescents

全国健康与营养检查调查 环境卫生 社会脆弱性 空气污染 可能性 人口 优势比 污染物 环境流行病学 星团(航天器) 逻辑回归 人口学 医学 心理干预 生物 生态学 病理 精神科 社会学 内科学 程序设计语言 计算机科学
作者
Carin Molchan,Wenhui Zhang,Anne M. Fitzpatrick,Abby Mutic
出处
期刊:Environmental Research [Elsevier BV]
卷期号:250: 118456-118456 被引量:1
标识
DOI:10.1016/j.envres.2024.118456
摘要

Inhaled air pollutants are environmental determinants of health with negative impacts on human health. Air pollution has been linked to the incidence and progression of disease, with its effects unequally distributed across the population. Children compared to adults are a highly vulnerable group and suffer disproportionately from systemic environmental inequities exacerbated by social determinants. To explore air pollution cluster patterns among 6- to 19-year-olds from the 2015–2016 National Health and Nutrition Examination Survey (NHANES) and examine chemical cluster associations with social vulnerability. NHANES data was extracted for 697 children and adolescents. Social vulnerability characteristics from questionnaires were assembled to construct a modified social vulnerability index (SVI). Thirty-four air pollutant exposure chemicals were measured in urine and available from the laboratory sub-sample A data. K-means clustering classified the sample into three groups: low, medium, and high chemical exposure groups. Logistic regression was used to examine associations between high chemical group membership and SVI after adjusting for age, biological sex, and BMI. Complex survey analysis was conducted using SAS v9.4 to reflect population effects. Air pollution clusters revealed significant differences in mean concentrations between groups for 31 analytes with minimal distinction in mixture profiles. SVI scores differed significantly between the three groups (P = .002), and with each point increase in their SVI, the odds of a child being assigned to the highest-chemical exposure group increased by 11.55% (95% CI: 1.02–1.31), after adjustment. Unsupervised clustering of environmental sub-sample specimens from NHANES provides an innovative, multi-pollutant model that can be used to explore exposure patterns in this population. Utilizing the modified SVI allows for the identification of children that may be highly susceptible to air pollution. It is imperative to interpret the research findings in light of historical structural and discriminatory inequalities to develop beneficial and sustainable solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaaa发布了新的文献求助10
1秒前
1秒前
大力完成签到 ,获得积分10
3秒前
科研通AI5应助皮天川采纳,获得30
4秒前
4秒前
小蘑菇应助aaaaaa采纳,获得10
5秒前
成就红牛发布了新的文献求助10
5秒前
terryok完成签到,获得积分10
6秒前
木头发布了新的文献求助10
6秒前
野性的柠檬完成签到,获得积分10
10秒前
木头完成签到,获得积分10
12秒前
12秒前
整齐半青完成签到 ,获得积分10
13秒前
hdh完成签到,获得积分10
14秒前
丘比特应助猜不猜不采纳,获得10
14秒前
23发布了新的文献求助50
17秒前
共享精神应助buxiangshangxue采纳,获得10
17秒前
UP完成签到,获得积分10
18秒前
22秒前
叶永芬完成签到,获得积分10
22秒前
23秒前
菌菌完成签到,获得积分10
24秒前
来自3602完成签到,获得积分10
24秒前
眼睛大的冰岚完成签到,获得积分10
27秒前
27秒前
28秒前
猜不猜不发布了新的文献求助10
28秒前
光之战士完成签到 ,获得积分10
28秒前
小宋宋完成签到,获得积分10
30秒前
梁霄完成签到,获得积分10
33秒前
彭于晏应助江月年采纳,获得10
35秒前
悦耳玲完成签到 ,获得积分10
41秒前
xxx完成签到 ,获得积分10
42秒前
老金金完成签到 ,获得积分10
44秒前
45秒前
火星上采梦完成签到,获得积分10
45秒前
45秒前
积极废物完成签到 ,获得积分10
46秒前
刘玥言完成签到,获得积分20
47秒前
香蕉觅云应助熊猫文文采纳,获得10
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468