Clustering by chemicals: A novel examination of chemical pollutants and social vulnerability in children and adolescents

全国健康与营养检查调查 环境卫生 社会脆弱性 空气污染 可能性 人口 优势比 污染物 环境流行病学 星团(航天器) 逻辑回归 人口学 医学 心理干预 生物 生态学 病理 精神科 社会学 内科学 程序设计语言 计算机科学
作者
Carin Molchan,Wenhui Zhang,Anne M. Fitzpatrick,Abby Mutic
出处
期刊:Environmental Research [Elsevier]
卷期号:250: 118456-118456 被引量:1
标识
DOI:10.1016/j.envres.2024.118456
摘要

Inhaled air pollutants are environmental determinants of health with negative impacts on human health. Air pollution has been linked to the incidence and progression of disease, with its effects unequally distributed across the population. Children compared to adults are a highly vulnerable group and suffer disproportionately from systemic environmental inequities exacerbated by social determinants. To explore air pollution cluster patterns among 6- to 19-year-olds from the 2015–2016 National Health and Nutrition Examination Survey (NHANES) and examine chemical cluster associations with social vulnerability. NHANES data was extracted for 697 children and adolescents. Social vulnerability characteristics from questionnaires were assembled to construct a modified social vulnerability index (SVI). Thirty-four air pollutant exposure chemicals were measured in urine and available from the laboratory sub-sample A data. K-means clustering classified the sample into three groups: low, medium, and high chemical exposure groups. Logistic regression was used to examine associations between high chemical group membership and SVI after adjusting for age, biological sex, and BMI. Complex survey analysis was conducted using SAS v9.4 to reflect population effects. Air pollution clusters revealed significant differences in mean concentrations between groups for 31 analytes with minimal distinction in mixture profiles. SVI scores differed significantly between the three groups (P = .002), and with each point increase in their SVI, the odds of a child being assigned to the highest-chemical exposure group increased by 11.55% (95% CI: 1.02–1.31), after adjustment. Unsupervised clustering of environmental sub-sample specimens from NHANES provides an innovative, multi-pollutant model that can be used to explore exposure patterns in this population. Utilizing the modified SVI allows for the identification of children that may be highly susceptible to air pollution. It is imperative to interpret the research findings in light of historical structural and discriminatory inequalities to develop beneficial and sustainable solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助徐徐采纳,获得10
1秒前
shouyu29应助MADKAI采纳,获得10
1秒前
shouyu29应助MADKAI采纳,获得10
1秒前
Lucas应助MADKAI采纳,获得10
1秒前
Vii应助MADKAI采纳,获得10
1秒前
李爱国应助MADKAI采纳,获得10
1秒前
李健应助MADKAI采纳,获得10
1秒前
烟花应助MADKAI采纳,获得20
1秒前
香蕉觅云应助MADKAI采纳,获得10
1秒前
科研通AI2S应助MADKAI采纳,获得10
1秒前
Singularity应助MADKAI采纳,获得10
1秒前
2秒前
2秒前
赘婿应助GGZ采纳,获得10
2秒前
阿盛完成签到,获得积分10
2秒前
2秒前
怕孤单的含羞草完成签到 ,获得积分10
3秒前
Muuu发布了新的文献求助10
3秒前
仁爱的乐枫完成签到,获得积分10
4秒前
4秒前
金润完成签到,获得积分10
5秒前
ZZ完成签到,获得积分10
5秒前
AteeqBaloch发布了新的文献求助10
6秒前
PaulLao完成签到,获得积分10
6秒前
6秒前
fleee发布了新的文献求助10
6秒前
6秒前
7秒前
Luyao发布了新的文献求助10
7秒前
海派Hi完成签到 ,获得积分10
7秒前
依依完成签到 ,获得积分10
8秒前
李健的小迷弟应助库外采纳,获得10
8秒前
yi完成签到 ,获得积分10
8秒前
kbj发布了新的文献求助10
8秒前
10秒前
佳言2009完成签到,获得积分10
11秒前
汉堡包应助漂亮的初蓝采纳,获得10
11秒前
hohokuz发布了新的文献求助10
12秒前
莫里完成签到,获得积分10
12秒前
zxz发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762