Lower-limb Motion Intent Recognition Based on Sensor Fusion and Fuzzy Multi-task Learning

计算机科学 人工智能 任务(项目管理) 模糊逻辑 运动(物理) 传感器融合 计算机视觉 模式识别(心理学) 工程类 系统工程
作者
Enkai Wang,Xingjian Chen,Yuge Li,Zhongzheng Fu,Jian Huang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tfuzz.2024.3364382
摘要

Lower-limb motion intent recognition is a crucial aspect of wearable robot control and human-machine collaboration. Among the various sensors used for this purpose, the electromyogram (EMG) sensor remains one of the most widely employed. However, EMG signals are highly susceptible to electrical noise, motion artefacts, and perspiration, which can compromise their quality. To address these challenges, we designed an air-pressure mechanomyography (PMMG) sensor and developed a wearable multi-modal sensor system that incorporates PMMG thigh-ring, inertial measurement unit (IMU), and force-sensitive resistor (FSR). To enhance gait phase and locomotion mode recognition performance, we proposed a gate multi-task TSK fuzzy inference system (GMT-TSK-FIS) algorithm that enables simultaneous handling of multiple recognition tasks. This approach enabled the development of a lower-limb motion intent recognition system that can simultaneously recognize gait phase and locomotion mode based on GMT-TSK-FIS. The experimental results showed that the accuracy of gait phase and locomotion mode recognition was 98.28% and 99.96%, respectively. Furthermore, the study demonstrated that multi-modal sensor fusion outperformed single-modal sensor fusion, while multi-task recognition exhibited better performance than single-task recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳思卉完成签到,获得积分10
刚刚
深情安青应助勤劳平萱采纳,获得10
1秒前
1秒前
CodeCraft应助南瓜猪猪头采纳,获得10
1秒前
爆米花应助Tici采纳,获得30
1秒前
2秒前
实验好难应助谢明鑫采纳,获得10
3秒前
NexusExplorer应助冷静巧凡采纳,获得10
3秒前
科研通AI5应助成长的点滴采纳,获得10
4秒前
幸福龙猫发布了新的文献求助10
4秒前
自信鞯发布了新的文献求助10
4秒前
叁壹粑粑完成签到,获得积分10
5秒前
5秒前
ql完成签到,获得积分10
6秒前
nbhvhb发布了新的文献求助10
6秒前
7秒前
yqzhang完成签到,获得积分10
7秒前
温婉的樱桃完成签到,获得积分10
8秒前
8秒前
南瓜猪猪头完成签到,获得积分10
8秒前
LY完成签到,获得积分20
8秒前
8秒前
10秒前
青松发布了新的文献求助10
10秒前
日光下完成签到 ,获得积分10
12秒前
gaogao发布了新的文献求助10
13秒前
LEO完成签到 ,获得积分10
13秒前
13秒前
13秒前
NIUBEN发布了新的文献求助10
14秒前
彭维楚发布了新的文献求助20
15秒前
15秒前
李健应助cy采纳,获得10
15秒前
guozizi应助LY采纳,获得30
15秒前
16秒前
18秒前
18秒前
科研通AI5应助拆东墙采纳,获得10
19秒前
科研通AI5应助自然卷采纳,获得10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331