The mechanism underlying asymmetric bending of lateral petals in Delphinium (Ranunculaceae)

花瓣 生物 表皮(动物学) 细胞生物学 花梗 分生组织 植物 解剖 遗传学 基因
作者
Hanghang Zhang,Xue Fang,Liping Guo,Jie Cheng,Florian Jabbour,Pierre-Emmanuel DuPasquier,Yanru Xie,Peng Zhang,Yijia Wu,Xiaoshan Duan,Hongzhi Kong,Rui Zhang
出处
期刊:Current Biology [Elsevier BV]
卷期号:34 (4): 755-768.e4 被引量:4
标识
DOI:10.1016/j.cub.2024.01.004
摘要

During the process of flower opening, most petals move downward in the direction of the pedicel (i.e., epinastic movement). In most Delphinium flowers, however, their two lateral petals display a very peculiar movement, the mirrored helical rotation, which requires the twist of the petal stalk. However, in some lineages, their lateral petals also exhibit asymmetric bending that increases the degree of mirrored helical rotation, facilitating the formation of a 3D final shape. Notably, petal asymmetric bending is a novel trait that has not been noticed yet, so its morphological nature, developmental process, and molecular mechanisms remain largely unknown. Here, by using D. anthriscifolium as a model, we determined that petal asymmetric bending was caused by the localized expansion of cell width, accompanied by the specialized array of cell wall nano-structure, on the adaxial epidermis. Digital gene analyses, gene expression, and functional studies revealed that a class I homeodomain-leucine zipper family transcription factor gene, DeanLATE MERISTEM IDENTITY1 (DeanLMI1), contributes to petal asymmetric bending; knockdown of it led to the formation of explanate 2D petals. Specifically, DeanLMI1 promotes cell expansion in width and influences the arrangement of cell wall nano-structure on the localized adaxial epidermis. These results not only provide a comprehensive portrait of petal asymmetric bending for the first time but also shed some new insights into the mechanisms of flower opening and helical movement in plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rauf发布了新的文献求助10
刚刚
1秒前
jinyu发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
quan发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
我是老大应助金色晨光采纳,获得10
7秒前
8秒前
简单的静枫完成签到,获得积分10
8秒前
希望天下0贩的0应助灵寒采纳,获得10
9秒前
尊敬兔子完成签到,获得积分10
9秒前
9秒前
wxn发布了新的文献求助10
9秒前
9秒前
9秒前
光亮的思柔完成签到,获得积分10
10秒前
10秒前
11秒前
第一百零一个完成签到,获得积分10
11秒前
12秒前
13秒前
沉静的浩然发布了新的文献求助150
13秒前
知晏完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
14秒前
amos发布了新的文献求助10
14秒前
花花完成签到,获得积分10
14秒前
中海完成签到,获得积分10
14秒前
shirley完成签到,获得积分10
15秒前
骆承坤完成签到,获得积分10
15秒前
16秒前
无私的迎松完成签到,获得积分10
16秒前
jinyu发布了新的文献求助10
16秒前
79发布了新的文献求助10
17秒前
Akim应助张阳采纳,获得10
18秒前
xrkxrk完成签到 ,获得积分0
18秒前
huihui完成签到 ,获得积分10
18秒前
18秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911181
求助须知:如何正确求助?哪些是违规求助? 4186662
关于积分的说明 13000828
捐赠科研通 3954470
什么是DOI,文献DOI怎么找? 2168314
邀请新用户注册赠送积分活动 1186706
关于科研通互助平台的介绍 1094084