ESM-NBR: fast and accurate nucleic acid-binding residue prediction via protein language model feature representation and multi-task learning

计算机科学 人工智能 特征(语言学) 隐马尔可夫模型 机器学习 水准点(测量) 特征学习 生物学数据 特征提取 代表(政治) 模式识别(心理学) 判别式 生物信息学 生物 哲学 大地测量学 政治 法学 地理 语言学 政治学
作者
Wenwu Zeng,Dafeng Lv,Xuan Liu,Guo Chen,Wenjuan Liu,Shaoliang Peng
标识
DOI:10.1109/bibm58861.2023.10385509
摘要

Protein-nucleic acid interactions play a very important role in a variety of biological activities. Accurate identification of nucleic acid-binding residues is a critical step in understanding the interaction mechanisms. Although many computationally based methods have been developed to predict nucleic acid-binding residues, challenges remain. In this study, a fast and accurate sequence-based method, called ESM-NBR, is proposed. In ESM-NBR, we first use the large protein language model ESM2 to extract discriminative biological properties feature representation from protein primary sequences; then, a multi-task deep learning model composed of stacked bidirectional long short-term memory (BiLSTM) and multi-layer perceptron (MLP) networks is employed to explore common and private information of DNA- and RNA-binding residues with ESM2 feature as input. Experimental results on benchmark data sets demonstrate that the prediction performance of ESM2 feature representation comprehensively outperforms evolutionary information-based hidden Markov model (HMM) features. Meanwhile, the ESM-NBR obtains the MCC values for DNA-binding residues prediction of 0.427 and 0.391 on two independent test sets, which are 18.61 and 10.45% higher than those of the second-best methods, respectively. Moreover, by completely discarding the time-cost multiple sequence alignment process, the prediction speed of ESM-NBR far exceeds that of existing methods (5.52s for a protein sequence of length 500, which is about 16 times faster than the second-fastest method). A user-friendly standalone package and the data of ESM-NBR are freely available for academic use at: https://github.com/wwzll123/ESM-NBR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zhurui采纳,获得10
刚刚
小艳发布了新的文献求助10
1秒前
glay完成签到 ,获得积分10
2秒前
2秒前
CipherSage应助嗷嗷采纳,获得10
2秒前
3秒前
3秒前
Hello应助DK不吃榴莲233采纳,获得10
4秒前
明灯三千完成签到,获得积分10
4秒前
flance发布了新的文献求助10
4秒前
冥月发布了新的文献求助10
4秒前
4秒前
4秒前
幸福妙柏完成签到 ,获得积分10
4秒前
5秒前
希望天下0贩的0应助hxldsb采纳,获得30
5秒前
希望天下0贩的0应助小美采纳,获得10
5秒前
5秒前
还在吗完成签到,获得积分10
6秒前
x笑一发布了新的文献求助20
6秒前
yuw完成签到 ,获得积分10
6秒前
6秒前
7秒前
瞄零完成签到,获得积分20
7秒前
Mocca完成签到,获得积分10
7秒前
西瓜完成签到 ,获得积分10
7秒前
阿西发布了新的文献求助10
7秒前
yy完成签到 ,获得积分10
8秒前
义气语儿完成签到,获得积分10
8秒前
酷波er应助潇洒的白猫采纳,获得10
9秒前
ZZ完成签到,获得积分10
9秒前
liu发布了新的文献求助10
9秒前
眯眯眼的衬衫应助ED采纳,获得200
10秒前
zumrat完成签到,获得积分20
10秒前
轻松的亦寒应助asiera采纳,获得50
10秒前
谷雨下完成签到,获得积分10
10秒前
stuffmatter发布了新的文献求助10
10秒前
乐乐应助孤独的珩采纳,获得10
10秒前
Marshall完成签到 ,获得积分10
11秒前
SussClay给SussClay的求助进行了留言
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594