ESM-NBR: fast and accurate nucleic acid-binding residue prediction via protein language model feature representation and multi-task learning

计算机科学 人工智能 特征(语言学) 隐马尔可夫模型 机器学习 水准点(测量) 特征学习 生物学数据 特征提取 代表(政治) 模式识别(心理学) 判别式 生物信息学 生物 哲学 语言学 大地测量学 政治 政治学 法学 地理
作者
Wenwu Zeng,Dafeng Lv,Xuan Liu,Guo Chen,Wenjuan Liu,Shaoliang Peng
标识
DOI:10.1109/bibm58861.2023.10385509
摘要

Protein-nucleic acid interactions play a very important role in a variety of biological activities. Accurate identification of nucleic acid-binding residues is a critical step in understanding the interaction mechanisms. Although many computationally based methods have been developed to predict nucleic acid-binding residues, challenges remain. In this study, a fast and accurate sequence-based method, called ESM-NBR, is proposed. In ESM-NBR, we first use the large protein language model ESM2 to extract discriminative biological properties feature representation from protein primary sequences; then, a multi-task deep learning model composed of stacked bidirectional long short-term memory (BiLSTM) and multi-layer perceptron (MLP) networks is employed to explore common and private information of DNA- and RNA-binding residues with ESM2 feature as input. Experimental results on benchmark data sets demonstrate that the prediction performance of ESM2 feature representation comprehensively outperforms evolutionary information-based hidden Markov model (HMM) features. Meanwhile, the ESM-NBR obtains the MCC values for DNA-binding residues prediction of 0.427 and 0.391 on two independent test sets, which are 18.61 and 10.45% higher than those of the second-best methods, respectively. Moreover, by completely discarding the time-cost multiple sequence alignment process, the prediction speed of ESM-NBR far exceeds that of existing methods (5.52s for a protein sequence of length 500, which is about 16 times faster than the second-fastest method). A user-friendly standalone package and the data of ESM-NBR are freely available for academic use at: https://github.com/wwzll123/ESM-NBR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枕上诗书应助倒计时采纳,获得30
2秒前
科研通AI6应助LQ采纳,获得30
3秒前
能干砖家完成签到,获得积分10
3秒前
zyy完成签到,获得积分10
3秒前
YYY完成签到,获得积分10
3秒前
Peter完成签到 ,获得积分10
4秒前
Maestro_S应助科研通管家采纳,获得30
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
5秒前
ccm应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
mmichaell应助科研通管家采纳,获得10
6秒前
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
MMP应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
布丁应助李雪采纳,获得50
6秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
旺通通应助科研通管家采纳,获得10
7秒前
shhoing应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
7秒前
俭朴寒天发布了新的文献求助10
10秒前
Cruiise完成签到,获得积分10
10秒前
哈哈2022完成签到,获得积分10
10秒前
zr发布了新的文献求助10
11秒前
天真的路灯完成签到 ,获得积分10
12秒前
迷人雪一完成签到,获得积分10
12秒前
讨厌下雨天完成签到 ,获得积分10
15秒前
16秒前
16秒前
Sherry完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419