Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods

柑橘类水果 橙色(颜色) 柑橘×冬青 人工智能 模式识别(心理学) 普通话 卷积神经网络 数学 线性判别分析 深度学习 计算机科学 机器视觉 园艺 生物系统 化学 生物 食品科学 语言学 哲学
作者
Zhonglei Cai,Chanjun Sun,Hailiang Zhang,Yizhi Zhang,Jiangbo Li
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:210: 112788-112788 被引量:14
标识
DOI:10.1016/j.postharvbio.2024.112788
摘要

Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phase-shifting pattern images under the spatial frequency of 0.25 cycles mm‐−1. Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxh完成签到,获得积分10
刚刚
刚刚
刚刚
23完成签到,获得积分10
刚刚
WHM完成签到,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
开放的无声完成签到,获得积分10
1秒前
舒适香露完成签到,获得积分10
1秒前
椰子完成签到,获得积分10
1秒前
1秒前
Akim应助oohQoo采纳,获得10
1秒前
不配.应助微笑霸采纳,获得200
2秒前
他方世界发布了新的文献求助10
2秒前
2秒前
不想太多完成签到,获得积分10
3秒前
3秒前
12121发布了新的文献求助10
3秒前
xiaodaiduyan发布了新的文献求助10
4秒前
特独斩完成签到,获得积分10
4秒前
忐忑的火完成签到,获得积分10
4秒前
4秒前
我是老大应助叶液采纳,获得10
4秒前
顾矜应助NONO采纳,获得10
4秒前
爆米花应助粗犷的三德采纳,获得10
5秒前
AbleT完成签到,获得积分10
5秒前
刘岩松发布了新的文献求助10
6秒前
乔垣结衣发布了新的文献求助10
8秒前
传奇3应助xiaodaiduyan采纳,获得10
9秒前
Happy完成签到 ,获得积分10
9秒前
杜昌淼完成签到,获得积分20
9秒前
fff完成签到,获得积分10
9秒前
黎晓完成签到,获得积分10
9秒前
充电宝应助屹男采纳,获得10
11秒前
11秒前
乐观的鸽子完成签到,获得积分10
12秒前
黎晓发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545545
求助须知:如何正确求助?哪些是违规求助? 4631578
关于积分的说明 14621138
捐赠科研通 4573196
什么是DOI,文献DOI怎么找? 2507417
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455383