Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods

柑橘类水果 橙色(颜色) 柑橘×冬青 人工智能 模式识别(心理学) 普通话 卷积神经网络 数学 线性判别分析 深度学习 计算机科学 机器视觉 园艺 生物系统 化学 生物 食品科学 语言学 哲学
作者
Zhonglei Cai,Chanjun Sun,Hailiang Zhang,Yizhi Zhang,Jiangbo Li
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:210: 112788-112788 被引量:14
标识
DOI:10.1016/j.postharvbio.2024.112788
摘要

Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phase-shifting pattern images under the spatial frequency of 0.25 cycles mm‐−1. Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西瓜发布了新的文献求助10
刚刚
Julo发布了新的文献求助10
1秒前
1秒前
kkt完成签到,获得积分10
2秒前
2秒前
三木完成签到 ,获得积分10
2秒前
默默完成签到,获得积分10
2秒前
2秒前
2秒前
maxine完成签到,获得积分10
2秒前
HH发布了新的文献求助10
2秒前
辛勤的鹰完成签到 ,获得积分10
3秒前
老大蒂亚戈完成签到,获得积分0
3秒前
小吉麻麻发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
AIUR给AIUR的求助进行了留言
4秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助Amo采纳,获得30
5秒前
缥缈幻柏完成签到,获得积分20
5秒前
5秒前
Akim应助香菜味钠片采纳,获得10
5秒前
5秒前
5秒前
5秒前
nefu biology发布了新的文献求助10
5秒前
默默发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
鱼鱼鱼发布了新的文献求助10
8秒前
哈哈我发布了新的文献求助10
8秒前
lilia发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679