亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods

柑橘类水果 橙色(颜色) 柑橘×冬青 人工智能 模式识别(心理学) 普通话 卷积神经网络 数学 线性判别分析 深度学习 计算机科学 机器视觉 园艺 生物系统 化学 生物 食品科学 语言学 哲学
作者
Zhonglei Cai,Chanjun Sun,Hailiang Zhang,Yizhi Zhang,Jiangbo Li
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:210: 112788-112788 被引量:14
标识
DOI:10.1016/j.postharvbio.2024.112788
摘要

Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phase-shifting pattern images under the spatial frequency of 0.25 cycles mm‐−1. Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LANER完成签到 ,获得积分10
1秒前
4秒前
LIUAiwei完成签到,获得积分10
5秒前
科研通AI6应助qiu采纳,获得10
8秒前
赘婿应助LIUAiwei采纳,获得150
8秒前
loko发布了新的文献求助10
10秒前
ceeray23应助为非常的好采纳,获得20
11秒前
loko完成签到,获得积分10
19秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
24秒前
24秒前
30秒前
lijiayu发布了新的文献求助10
35秒前
颜卿完成签到 ,获得积分10
38秒前
哈哈哈完成签到 ,获得积分10
43秒前
51秒前
科目三应助lijiayu采纳,获得10
55秒前
57秒前
贺光萌完成签到 ,获得积分10
58秒前
lijiayu完成签到,获得积分20
1分钟前
zizi完成签到 ,获得积分10
1分钟前
果小镁发布了新的文献求助10
1分钟前
上官若男应助学术小白采纳,获得10
1分钟前
研友_VZG7GZ应助Liang采纳,获得10
1分钟前
xinxin完成签到,获得积分10
1分钟前
1分钟前
Fangdaidai完成签到 ,获得积分10
1分钟前
xmsyq完成签到 ,获得积分10
1分钟前
小艾完成签到 ,获得积分10
2分钟前
白斯特完成签到,获得积分10
2分钟前
友好钢笔完成签到,获得积分10
2分钟前
勤奋的猫咪完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
盐焗鱼丸完成签到 ,获得积分10
2分钟前
yyhatb发布了新的文献求助10
2分钟前
南宫硕完成签到 ,获得积分10
2分钟前
Tao完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561238
求助须知:如何正确求助?哪些是违规求助? 4646374
关于积分的说明 14678419
捐赠科研通 4587681
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490462
关于科研通互助平台的介绍 1461344