Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods

柑橘类水果 橙色(颜色) 柑橘×冬青 人工智能 模式识别(心理学) 普通话 卷积神经网络 数学 线性判别分析 深度学习 计算机科学 机器视觉 园艺 生物系统 化学 生物 食品科学 语言学 哲学
作者
Zhonglei Cai,Chanjun Sun,Hailiang Zhang,Yizhi Zhang,Jiangbo Li
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:210: 112788-112788 被引量:14
标识
DOI:10.1016/j.postharvbio.2024.112788
摘要

Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phase-shifting pattern images under the spatial frequency of 0.25 cycles mm‐−1. Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曹医生完成签到,获得积分10
刚刚
bclddmy完成签到,获得积分10
刚刚
司藤完成签到 ,获得积分10
1秒前
lzl008完成签到 ,获得积分10
1秒前
WENS完成签到,获得积分10
1秒前
bener完成签到,获得积分10
4秒前
qiongqiong完成签到 ,获得积分10
4秒前
孤独星月发布了新的文献求助10
4秒前
板凳板凳完成签到 ,获得积分10
4秒前
南攻完成签到,获得积分10
5秒前
6秒前
东风完成签到,获得积分10
9秒前
9秒前
西西完成签到,获得积分10
9秒前
9秒前
高级后勤完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
14秒前
byby完成签到,获得积分10
15秒前
16秒前
BLAZe完成签到 ,获得积分10
16秒前
sqf1209完成签到,获得积分10
17秒前
ywindm完成签到,获得积分10
17秒前
yywang完成签到 ,获得积分10
18秒前
zeannezg完成签到 ,获得积分10
19秒前
20秒前
枫糖叶落完成签到,获得积分10
22秒前
Lucky.完成签到 ,获得积分0
23秒前
lululu完成签到 ,获得积分10
25秒前
知性的夏槐完成签到 ,获得积分10
25秒前
哈哈李完成签到,获得积分10
26秒前
小奇曲饼完成签到 ,获得积分10
26秒前
26秒前
misa完成签到 ,获得积分10
27秒前
ning_qing完成签到 ,获得积分10
28秒前
甜甜醉波完成签到,获得积分10
28秒前
善良的冷梅完成签到,获得积分10
28秒前
yywang关注了科研通微信公众号
28秒前
28秒前
Dlan完成签到,获得积分10
29秒前
呆萌井完成签到,获得积分10
29秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590