Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods

柑橘类水果 橙色(颜色) 柑橘×冬青 人工智能 模式识别(心理学) 普通话 卷积神经网络 数学 线性判别分析 深度学习 计算机科学 机器视觉 园艺 生物系统 化学 生物 食品科学 语言学 哲学
作者
Zhonglei Cai,Chanjuan Sun,Hai-Liang Zhang,Yizhi Zhang,Jiangbo Li
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:210: 112788-112788
标识
DOI:10.1016/j.postharvbio.2024.112788
摘要

Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phase-shifting pattern images under the spatial frequency of 0.25 cycles mm‐−1. Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cathay完成签到,获得积分10
1秒前
最最最最幸运的人完成签到,获得积分10
1秒前
在水一方应助Lakebaikal采纳,获得20
1秒前
赘婿应助隐形荟采纳,获得10
1秒前
thremo完成签到,获得积分10
2秒前
2秒前
jam完成签到,获得积分10
2秒前
秘密完成签到,获得积分10
2秒前
3秒前
4秒前
细心冰之完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
future完成签到,获得积分10
5秒前
你要学好发布了新的文献求助10
5秒前
小笼包完成签到,获得积分10
6秒前
6秒前
6秒前
enjoy发布了新的文献求助30
8秒前
Breadbread发布了新的文献求助10
8秒前
王雨晴完成签到,获得积分10
8秒前
Akim应助Will采纳,获得10
9秒前
hecarli完成签到,获得积分10
9秒前
10秒前
ttyy完成签到,获得积分20
10秒前
10秒前
11秒前
花痴的语堂完成签到,获得积分10
11秒前
11秒前
12秒前
淡然平蓝发布了新的文献求助30
12秒前
zhuangxiaocheng完成签到,获得积分20
12秒前
美满的冬卉完成签到 ,获得积分10
12秒前
13秒前
喂喂巍完成签到 ,获得积分10
13秒前
bd发布了新的文献求助10
13秒前
嗯哼应助孤独的问凝采纳,获得20
14秒前
zzz完成签到 ,获得积分10
15秒前
WQ发布了新的文献求助30
15秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053115
求助须知:如何正确求助?哪些是违规求助? 2710358
关于积分的说明 7421333
捐赠科研通 2354967
什么是DOI,文献DOI怎么找? 1246568
科研通“疑难数据库(出版商)”最低求助积分说明 606146
版权声明 595975