已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods

柑橘类水果 橙色(颜色) 柑橘×冬青 人工智能 模式识别(心理学) 普通话 卷积神经网络 数学 线性判别分析 深度学习 计算机科学 机器视觉 园艺 生物系统 化学 生物 食品科学 语言学 哲学
作者
Zhonglei Cai,Chanjun Sun,Hailiang Zhang,Yizhi Zhang,Jiangbo Li
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:210: 112788-112788 被引量:14
标识
DOI:10.1016/j.postharvbio.2024.112788
摘要

Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phase-shifting pattern images under the spatial frequency of 0.25 cycles mm‐−1. Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
冯露瑶发布了新的文献求助10
2秒前
4秒前
方盒完成签到 ,获得积分10
4秒前
5秒前
哈哈哈哈完成签到,获得积分10
7秒前
YZ完成签到,获得积分10
7秒前
曾经山灵完成签到 ,获得积分10
7秒前
细心的山槐完成签到,获得积分10
8秒前
彭于晏应助直率的菠萝采纳,获得10
8秒前
二中所长完成签到,获得积分10
11秒前
冯露瑶完成签到,获得积分20
11秒前
lyy发布了新的文献求助10
11秒前
李锐驳回了Lucas应助
13秒前
静谧180完成签到 ,获得积分10
13秒前
15秒前
18秒前
18秒前
所所应助kento采纳,获得30
19秒前
Orange应助科研通管家采纳,获得10
20秒前
BowieHuang应助科研通管家采纳,获得10
20秒前
fxfcpu发布了新的文献求助10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
fiife应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
lanxinyue发布了新的文献求助10
23秒前
曾经山灵发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599471
求助须知:如何正确求助?哪些是违规求助? 4685106
关于积分的说明 14837681
捐赠科研通 4668281
什么是DOI,文献DOI怎么找? 2537976
邀请新用户注册赠送积分活动 1505410
关于科研通互助平台的介绍 1470783