Developing universal classification models for the detection of early decayed citrus by structured-illumination reflectance imaging coupling with deep learning methods

柑橘类水果 橙色(颜色) 柑橘×冬青 人工智能 模式识别(心理学) 普通话 卷积神经网络 数学 线性判别分析 深度学习 计算机科学 机器视觉 园艺 生物系统 化学 生物 食品科学 哲学 语言学
作者
Zhonglei Cai,Chanjuan Sun,Hai-Liang Zhang,Yizhi Zhang,Jiangbo Li
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:210: 112788-112788
标识
DOI:10.1016/j.postharvbio.2024.112788
摘要

Early detection of decay caused by fungal infection in citrus fruit is a major challenge for the citrus industry, as the decayed area is almost invisible on the surface of fruit. This study constructed a new detection system for structural illumination imaging combined with light-emitting diode (LED) lamp and a monochrome camera. The direct component (DC) and alternating component (AC) images were recovered by demodulating three phase-shifting pattern images under the spatial frequency of 0.25 cycles mm‐−1. Compared with the DC image, the decayed area can be clearly displayed in the AC image and ratio image (i.e. AC/DC). For independent models, the classification accuracy of the decayed oranges and sugar mandarins reached 92.5% and 95.0% by combining RT images with convolutional neural network (CNN) method, respectively. However, it is time-consuming and labor-intensive to construct different models to predict the corresponding citrus variety. Thus, this study also explored the feasibility of establishing the universal classification model suitable for various citrus fruit. The classification performance of partial least square discriminant analysis and CNN models was evaluated and compared. Among all universal models, the CNN model exhibited superior performance with classification accuracies of 95.0% for independent test set including two varieties of citrus fruit (orange and sugar mandarin). For four types of citrus (orange, sugar mandarin, dekopon and Nanfeng sweet mandarin), the overall classification accuracy of the universal model was 90.6%. This study demonstrated that different varieties of early decayed citrus can be effectively identified by constructing a universal CNN model combined with structured-illumination reflectance imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小新应助阔达书雪采纳,获得10
1秒前
赘婿应助KM采纳,获得10
2秒前
快乐乐发布了新的文献求助10
2秒前
Luis发布了新的文献求助10
3秒前
4秒前
科目三应助Lijia_YAO采纳,获得10
4秒前
一口袋的风完成签到 ,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Boren完成签到,获得积分10
6秒前
菜花发布了新的文献求助10
6秒前
时间纬度完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
9秒前
阳阳发布了新的文献求助10
9秒前
大猪头完成签到,获得积分10
9秒前
人如机关注了科研通微信公众号
10秒前
胖奥小肥仔完成签到,获得积分10
10秒前
NexusExplorer应助可可西里采纳,获得10
10秒前
arabidopsis发布了新的文献求助10
11秒前
11秒前
林小昀发布了新的文献求助10
11秒前
科研小白发布了新的文献求助10
12秒前
一口袋的风关注了科研通微信公众号
13秒前
wop111应助MoYu采纳,获得30
13秒前
13秒前
13秒前
cameo6980发布了新的文献求助20
14秒前
朴实电灯泡完成签到,获得积分10
14秒前
大猪头发布了新的文献求助10
14秒前
kingwill举报风中的非笑求助涉嫌违规
16秒前
17秒前
18秒前
amiable22完成签到,获得积分10
18秒前
MM发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4932570
求助须知:如何正确求助?哪些是违规求助? 4200941
关于积分的说明 13051143
捐赠科研通 3974907
什么是DOI,文献DOI怎么找? 2178106
邀请新用户注册赠送积分活动 1194476
关于科研通互助平台的介绍 1105809