Latent classes of symptom trajectories among major depressive disorder patients in China

重性抑郁障碍 萧条(经济学) 焦虑 评定量表 潜在类模型 汉密尔顿抑郁量表 认知 精神科 心理学 逻辑回归 临床心理学 医学 内科学 发展心理学 经济 宏观经济学 统计 数学
作者
Yufei Wang,Jiarui Li,Bian Wen,Yanping Duan,Wenqi Geng,Jing Jiang,Xiaohui Zhao,Tao Li,Yinan Jiang,Lili Shi,Jinya Cao,Gang Zhu,Kerang Zhang,Qiaoling Chen,Hongjun Tian,Xueyi Wang,Nan Zhang,Gang Wang,Jing Wei,Xin Yu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:350: 746-754
标识
DOI:10.1016/j.jad.2024.01.144
摘要

This study aimed to understand the long-term symptom trajectories of Chinese patients with major depressive disorder (MDD) using piecewise latent growth modeling and growth mixture modeling. The investigation also aimed to identify the baseline characteristics indicative of poorer treatment outcomes. A total of 558 outpatients with MDD were assessed using a sequence of surveys. The Hamilton Rating Scale for Depression (HRSD), Hamilton Anxiety Rating Scale (HAMA), and Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) were used to evaluate baseline depression, anxiety, and cognitive function. Depression symptom severity was subsequently measured at the 1-month, 2-month, 6-month, 1-year, and 2-year follow-ups. Results indicated three depressive symptomology trajectories, including (a) severe, improving class (12.72 %), (b) partially responding, later deteriorating class (6.09 %), and (c) moderate, improving class (81.18 %). Logistic regression analyses showed that a history of cardiovascular disease (CVD) increased the odds of belonging to the partially responding, later deteriorating class, whereas higher baseline depression increased the odds of belonging to the severe, improving class compared to the moderate, improving class. Patients who experienced less depression relief during the first month of treatment had a lower probability of belonging to the moderate, improving class. Participant attrition in this study may have inflated the estimated rate of treatment-resistant patients. The burden of CVD and poorer initial treatment response are plausible risk factors for poorer treatment outcomes, highlighting targets for intervention in Chinese MDD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助卡皮巴拉采纳,获得10
1秒前
顾矜应助球闪采纳,获得10
1秒前
3秒前
3秒前
弄啥嘞昂应助QR采纳,获得10
4秒前
上官若男应助QR采纳,获得10
4秒前
毛豆应助QR采纳,获得10
4秒前
orixero应助QR采纳,获得10
4秒前
隐形曼青应助卡皮巴拉采纳,获得10
6秒前
7秒前
伊酒应助zz采纳,获得10
8秒前
夜捕白日梦完成签到,获得积分10
8秒前
小番茄完成签到,获得积分10
9秒前
10秒前
科研小能手完成签到 ,获得积分10
11秒前
12秒前
爱哭的小女孩完成签到,获得积分20
13秒前
橙子发布了新的文献求助10
14秒前
灵巧书本完成签到,获得积分20
15秒前
小陈发布了新的文献求助10
17秒前
zhongzhong发布了新的文献求助10
20秒前
20秒前
廖佰城完成签到,获得积分10
23秒前
24秒前
充电宝应助小陈采纳,获得10
25秒前
26秒前
风评发布了新的文献求助10
27秒前
丹丹关注了科研通微信公众号
28秒前
Lucas应助weeqe采纳,获得10
28秒前
kyoko完成签到,获得积分20
28秒前
zhongzhong完成签到,获得积分10
30秒前
30秒前
FIN应助123采纳,获得10
30秒前
完美世界应助稳定上分采纳,获得10
32秒前
32秒前
SciGPT应助晶晶妹妹采纳,获得10
34秒前
受伤金鑫发布了新的文献求助30
34秒前
CodeCraft应助追光者采纳,获得10
35秒前
35秒前
OAO完成签到,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605