Latent classes of symptom trajectories among major depressive disorder patients in China

重性抑郁障碍 萧条(经济学) 焦虑 评定量表 潜在类模型 汉密尔顿抑郁量表 认知 精神科 心理学 逻辑回归 临床心理学 医学 内科学 发展心理学 经济 宏观经济学 统计 数学
作者
Yufei Wang,Jiarui Li,Bian Wen,Yanping Duan,Wenqi Geng,Jing Jiang,Xiaohui Zhao,Tao Li,Yinan Jiang,Lili Shi,Jinya Cao,Gang Zhu,Kerang Zhang,Qiaoling Chen,Hongjun Tian,Xueyi Wang,Nan Zhang,Gang Wang,Jing Wei,Xin Yu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:350: 746-754
标识
DOI:10.1016/j.jad.2024.01.144
摘要

This study aimed to understand the long-term symptom trajectories of Chinese patients with major depressive disorder (MDD) using piecewise latent growth modeling and growth mixture modeling. The investigation also aimed to identify the baseline characteristics indicative of poorer treatment outcomes. A total of 558 outpatients with MDD were assessed using a sequence of surveys. The Hamilton Rating Scale for Depression (HRSD), Hamilton Anxiety Rating Scale (HAMA), and Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) were used to evaluate baseline depression, anxiety, and cognitive function. Depression symptom severity was subsequently measured at the 1-month, 2-month, 6-month, 1-year, and 2-year follow-ups. Results indicated three depressive symptomology trajectories, including (a) severe, improving class (12.72 %), (b) partially responding, later deteriorating class (6.09 %), and (c) moderate, improving class (81.18 %). Logistic regression analyses showed that a history of cardiovascular disease (CVD) increased the odds of belonging to the partially responding, later deteriorating class, whereas higher baseline depression increased the odds of belonging to the severe, improving class compared to the moderate, improving class. Patients who experienced less depression relief during the first month of treatment had a lower probability of belonging to the moderate, improving class. Participant attrition in this study may have inflated the estimated rate of treatment-resistant patients. The burden of CVD and poorer initial treatment response are plausible risk factors for poorer treatment outcomes, highlighting targets for intervention in Chinese MDD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尽平梅愿完成签到 ,获得积分10
3秒前
赘婿应助李书荣采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
hi应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得30
4秒前
烟花应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
lascqy完成签到 ,获得积分10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
pluto应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
打打应助科研通管家采纳,获得10
4秒前
6秒前
hanna完成签到,获得积分20
6秒前
8秒前
8秒前
ke完成签到,获得积分10
9秒前
孙兆杰完成签到,获得积分10
10秒前
hahahaweiwei发布了新的文献求助10
10秒前
10秒前
LMY完成签到 ,获得积分10
13秒前
李书荣发布了新的文献求助10
13秒前
温婉的香水完成签到 ,获得积分10
14秒前
充电宝应助无奈苡采纳,获得10
15秒前
QQ发布了新的文献求助10
15秒前
李书荣发布了新的文献求助10
15秒前
科研通AI5应助美满的菠萝采纳,获得10
18秒前
完美世界应助son采纳,获得10
18秒前
Tianling完成签到,获得积分0
19秒前
Ww发布了新的文献求助10
23秒前
24秒前
NexusExplorer应助kevin采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268